Comparative analysis of the PAL gene family in nine citruses provides new insights into the stress resistance mechanism of Citrus species.


Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 28 05 2024
accepted: 23 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

The phenylalanine ammonia-lyase (PAL) gene, a well-studied plant defense gene, is crucial for growth, development, and stress resistance. The PAL gene family has been studied in many plants. Citrus is among the most vital cash crops worldwide. However, the PAL gene family has not been comprehensively studied in most Citrus species, and the biological functions and specific underlying mechanisms are unclear. We identified 41 PAL genes from nine Citrus species and revealed different patterns of evolution among the PAL genes in different Citrus species. Gene duplication was found to be a vital mechanism for the expansion of the PAL gene family in citrus. In addition, there was a strong correlation between the ability of PAL genes to respond to stress and their evolutionary duration in citrus. PAL genes with shorter evolutionary times were involved in more multiple stress responses, and these PAL genes with broad-spectrum resistance were all single-copy genes. By further integrating the lignin and flavonoid synthesis pathways in citrus, we observed that PAL genes contribute to the synthesis of lignin and flavonoids, which enhance the physical defense and ROS scavenging ability of citrus plants, thereby helping them withstand stress. This study provides a comprehensive framework of the PAL gene family in citrus, and we propose a hypothetical model for the stress resistance mechanism in citrus. This study provides a foundation for further investigations into the biological functions of PAL genes in the growth, development, and response to various stresses in citrus.

Sections du résumé

BACKGROUND BACKGROUND
The phenylalanine ammonia-lyase (PAL) gene, a well-studied plant defense gene, is crucial for growth, development, and stress resistance. The PAL gene family has been studied in many plants. Citrus is among the most vital cash crops worldwide. However, the PAL gene family has not been comprehensively studied in most Citrus species, and the biological functions and specific underlying mechanisms are unclear.
RESULTS RESULTS
We identified 41 PAL genes from nine Citrus species and revealed different patterns of evolution among the PAL genes in different Citrus species. Gene duplication was found to be a vital mechanism for the expansion of the PAL gene family in citrus. In addition, there was a strong correlation between the ability of PAL genes to respond to stress and their evolutionary duration in citrus. PAL genes with shorter evolutionary times were involved in more multiple stress responses, and these PAL genes with broad-spectrum resistance were all single-copy genes. By further integrating the lignin and flavonoid synthesis pathways in citrus, we observed that PAL genes contribute to the synthesis of lignin and flavonoids, which enhance the physical defense and ROS scavenging ability of citrus plants, thereby helping them withstand stress.
CONCLUSIONS CONCLUSIONS
This study provides a comprehensive framework of the PAL gene family in citrus, and we propose a hypothetical model for the stress resistance mechanism in citrus. This study provides a foundation for further investigations into the biological functions of PAL genes in the growth, development, and response to various stresses in citrus.

Identifiants

pubmed: 39482587
doi: 10.1186/s12864-024-10938-3
pii: 10.1186/s12864-024-10938-3
doi:

Substances chimiques

Phenylalanine Ammonia-Lyase EC 4.3.1.24
Plant Proteins 0
Lignin 9005-53-2
Flavonoids 0

Types de publication

Journal Article Comparative Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1020

Subventions

Organisme : Rural Revitalization Science and Technology Project-Rural Revitalization Industry Key Technology Integration demonstration Project
ID : 202304BP090005
Organisme : Yunnan Academician (expert) Workstation Project
ID : 202305AF150020
Organisme : National Natural Science Foundation of China
ID : No. 31760450

Informations de copyright

© 2024. The Author(s).

Références

Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45(1):59–66. https://doi.org/10.1038/ng.2472 .
doi: 10.1038/ng.2472 pubmed: 23179022
Russo R, Sicilia A, Caruso M, Arlotta C, Silvestro SD, Gmitter FG, Nicolosi E, Piero ARL. De Novo transcriptome sequencing of rough lemon leaves (Citrus jambhiri Lush.) In response to Plenodomus tracheiphilus infection. Int J Mol Sci. 2021;22(2):882. https://doi.org/10.3390/ijms22020882 .
doi: 10.3390/ijms22020882 pubmed: 33477297 pmcid: 7830309
Wei L, Wang W, Li T, Chen O, Yao S, Deng L, Zeng K. Genome-wide identification of the CsPAL gene family and functional analysis for strengthening green mold resistance in Citrus fruit. Postharvest Biol Technol. 2023;196:112178. https://doi.org/10.1016/j.postharvbio.2022.112178 .
doi: 10.1016/j.postharvbio.2022.112178
Gaur RK, Verma RK, Khurana SMP. Chap. 2 - genetic engineering of horticultural crops: present and future. In: Rout GR, Peter KV, editors. Genetic engineering of horticultural crops. Cambridge: Academic; 2018. pp. 23–46. https://doi.org/10.1016/B978-0-12-810439-2.00002-7 .
doi: 10.1016/B978-0-12-810439-2.00002-7
Cochrane FC, Davin LB, Lewis NG. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry. 2004;65(11):1557–64. https://doi.org/10.1016/j.phytochem.2004.05.006 .
doi: 10.1016/j.phytochem.2004.05.006 pubmed: 15276452
Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, Chen HC, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR, Chiang VL. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta. 2013;238(3):487–97. https://doi.org/10.1007/s00425-013-1905-1 .
doi: 10.1007/s00425-013-1905-1 pubmed: 23765265
de Jong F, Hanley SJ, Beale MH, Karp A. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. Phytochemistry. 2015;117:90–7. https://doi.org/10.1016/j.phytochem.2015.06.005 .
doi: 10.1016/j.phytochem.2015.06.005 pubmed: 26070140 pmcid: 4560161
Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta. 2012;236(1):313–26. https://doi.org/10.1007/s00425-012-1613-2 .
doi: 10.1007/s00425-012-1613-2 pubmed: 22349733 pmcid: 3382651
He Y, Zhong X, Jiang X, Cong H, Sun H, Qiao F. Characterisation, expression and functional analysis of PAL gene family in Cephalotaxus hainanensis. Plant Physiol Bioch. 2020;156:461–70. https://doi.org/10.1016/j.plaphy.2020.09.030 .
doi: 10.1016/j.plaphy.2020.09.030
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010;153(4):1526–38. https://doi.org/10.1104/pp.110.157370 .
doi: 10.1104/pp.110.157370 pubmed: 20566705 pmcid: 2923909
Zhang F, Wang J, Li X, Zhang J, Liu Y, Chen Y, Yu Q, Li N. Genome-wide identification and expression analyses of phenylalanine ammonia-lyase gene family members from tomato (Solanum lycopersicum) reveal their role in root-knot nematode infection. Front Plant Sci. 2023;14:1204990. https://doi.org/10.3389/fpls.2023.1204990 .
doi: 10.3389/fpls.2023.1204990 pubmed: 37346127 pmcid: 10280380
Pant S, Huang Y. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation. Sci Rep. 2022;12(1):22537. https://doi.org/10.1038/s41598-022-25214-1 .
doi: 10.1038/s41598-022-25214-1 pubmed: 36581623 pmcid: 9800386
Zhang H, Zhang X, Zhao H, Hu J, Wang Z, Yang G, Zhou X, Wan H. Genome-wide identification and expression analysis of phenylalanine ammonia-lyase (PAL) family in rapeseed (Brassica napus L). BMC Plant Biol. 2023;23(1):481. https://doi.org/10.1186/s12870-023-04472-9 .
doi: 10.1186/s12870-023-04472-9 pubmed: 37814209 pmcid: 10563225
Barros J, Dixon RA. Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends Plant Sci. 2020;25(1):66–79. https://doi.org/10.1016/j.tplants.2019.09.011 .
doi: 10.1016/j.tplants.2019.09.011 pubmed: 31679994
Jun SY, Sattler SA, Cortez GS, Vermerris W, Sattler SE, Kang C. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase. Plant Physiol. 2018;176(2):1452–68. https://doi.org/10.1104/pp.17.01608 .
doi: 10.1104/pp.17.01608 pubmed: 29196539
Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot. 2022;73(17):5992–6008. https://doi.org/10.1093/jxb/erac276 .
doi: 10.1093/jxb/erac276 pubmed: 35727860
Qin Q, Shi X, Pei L, Gao X. Induction of phenylalanine ammonia-lyase and lipoxtgenase in cotton seedlings by mechanical wounding and aphid infestation. Prog Nat Sci. 2005;15(5):419–23. https://doi.org/10.1080/10020070512331342330 .
doi: 10.1080/10020070512331342330
He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci. 2020;117(1):271–7. https://doi.org/10.1073/pnas.1902771116 .
doi: 10.1073/pnas.1902771116 pubmed: 31848246
Mo F, Li L, Zhang C, Yang C, Chen G, Niu Y, Si J, Liu T, Sun X, Wang S, Wang D, Chen Q, Chen Y. Genome-wide analysis and expression profiling of the phenylalanine ammonia-lyase gene family in Solanum tuberosum. Int J Mol Sci. 2022;23(12):6833. https://doi.org/10.3390/ijms23126833 .
doi: 10.3390/ijms23126833 pubmed: 35743276 pmcid: 9224352
Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver MJ, Zhang D. The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium Dahliae via phenylpropanoid gene regulation. Plant J. 2023;113(1):75–91. https://doi.org/10.1111/tpj.16035 .
doi: 10.1111/tpj.16035 pubmed: 36416176
Deng B, Wang W, Deng L, Yao S, Ming J, Zeng K. Comparative RNA-seq analysis of citrus fruit in response to infection with three major postharvest fungi. Postharvest Biol Tec. 2018;146:134–46. https://doi.org/10.1016/j.postharvbio.2018.08.012 .
doi: 10.1016/j.postharvbio.2018.08.012
Liu H, Wang X, Liu S, Huang Y, Guo YX, Xie WZ, Liu H, Qamar MTU, Xu Q, Chen LL. Citrus pan-genome to breeding database (CPBD): a comprehensive genome database for Citrus breeding. Mol Plant. 2022;15(10):1503–5. https://doi.org/10.1016/j.molp.2022.08.006 .
doi: 10.1016/j.molp.2022.08.006 pubmed: 36004795
Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P. TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics. 2002;2(6):239–53. https://doi.org/10.1007/s10142-002-0077-z .
doi: 10.1007/s10142-002-0077-z pubmed: 12444417
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. Int J Biol Macromol. 2024;254(Pt 2):127829. https://doi.org/10.1016/j.ijbiomac.2023.127829 .
doi: 10.1016/j.ijbiomac.2023.127829 pubmed: 37926304
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile of NBS-LRR gene family in sweet orange (Citrus sinensis). Gene. 2023;854:147117. https://doi.org/10.1016/j.gene.2022.147117 .
doi: 10.1016/j.gene.2022.147117 pubmed: 36526123
Sami A, Haider MZ, Shafiq M, Sadiq S, Ahmad F. Genome-wide identification and in-silico expression analysis of CCO gene family in sunflower (Helianthus Annnus) against abiotic stress. Plant Mol Biol. 2024;114(2):34. https://doi.org/10.1007/s11103-024-01433-0 .
doi: 10.1007/s11103-024-01433-0 pubmed: 38568355 pmcid: 10991017
Xue JY, Zhao T, Liu Y, Zhang YX, Shao ZQ. Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes. Front Genet. 2020;10:1286. https://doi.org/10.3389/fgene.2019.01286 .
doi: 10.3389/fgene.2019.01286 pubmed: 31998358 pmcid: 6960632
Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AV, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285 .
doi: 10.1038/nmeth.4285 pubmed: 28481363 pmcid: 5453245
Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023;51(W1):W587–92. https://doi.org/10.1093/nar/gkad359 .
doi: 10.1093/nar/gkad359 pubmed: 37144476 pmcid: 10320113
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009 .
doi: 10.1016/j.molp.2020.06.009 pubmed: 32585190
Shao Y, Zhou Y, Yang L, Mu D, Wilson IW, Zhang Y, Zhu L, Liu X, Luo L, He J, Qiu D, Tang Q. Genome-wide identification of GATA transcription factor family and the effect of different light quality on the accumulation of terpenoid indole alkaloids in Uncaria rhynchophylla. Plant Mol Biol. 2024;114(1):15. https://doi.org/10.1007/s11103-023-01400-1 .
doi: 10.1007/s11103-023-01400-1 pubmed: 38329633
Han P, Yin T, Xi D, Yang X, Zhang M, Zhu L, Zhang H, Liu X. Genome-wide identification of the sweet orange bZIP gene family and analysis of their expression in response to infection by Penicillium Digitatum. Horticulturae. 2023;9(3):393. https://doi.org/10.3390/horticulturae9030393 .
doi: 10.3390/horticulturae9030393
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. https://doi.org/10.1093/nar/gkr1293 .
doi: 10.1093/nar/gkr1293 pubmed: 22217600 pmcid: 3326336
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–26. https://doi.org/10.1093/oxfordjournals.molbev.a040410 .
doi: 10.1093/oxfordjournals.molbev.a040410 pubmed: 3444411
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000;17(1):32–43. https://doi.org/10.1093/oxfordjournals.molbev.a026236 .
doi: 10.1093/oxfordjournals.molbev.a026236 pubmed: 10666704
Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002;18(9):486. https://doi.org/10.1016/s0168-9525(02)02722-1 .
doi: 10.1016/s0168-9525(02)02722-1 pubmed: 12175810
Li N, Wang K, Williams HN, Sun J, Ding C, Leng X, Dong K. Analysis of gene gain and loss in the evolution of predatory bacteria. Gene. 2017;598:63–70. https://doi.org/10.1016/j.gene.2016.10.039 .
doi: 10.1016/j.gene.2016.10.039 pubmed: 27825775
Li Y, Li ZH, Zhang FR, Li S, Gu YB, Tian WJ, Tian WR, Wang JB, Wen J, Li JR. Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants. Plant J. 2023;116(3):823–39. https://doi.org/10.1111/tpj.16411 .
doi: 10.1111/tpj.16411 pubmed: 37522396
Guo P, Qi YP, Huang WL, Yang LT, Huang ZR, Lai NW, Chen LS. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. Ecotoxicol Environ Saf. 2018;158:213–22. https://doi.org/10.1016/j.ecoenv.2018.04.038 .
doi: 10.1016/j.ecoenv.2018.04.038 pubmed: 29704792
Guo P, Qi YP, Yang LT, Lai NW, Ye X, Yang Y, Chen LS. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance. Front Plant Sci. 2017;8:330. https://doi.org/10.3389/fpls.2017.00330 .
doi: 10.3389/fpls.2017.00330 pubmed: 28337215 pmcid: 5340773
Zia K, Rao MJ, Sadaqat M, Azeem F, Fatima K, Qamar MTU, Alshammari A, Alharbi M. Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in Citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Front Genet. 2022;13:1034921. https://doi.org/10.3389/fgene.2022.1034921 .
doi: 10.3389/fgene.2022.1034921 pubmed: 36303546 pmcid: 9593079
Yang LT, Zhou YF, Wang YY, Wu YM, Ye X, Guo JX, Chen LS. Magnesium deficiency induced global transcriptome change in Citrus sinensis leaves revealed by RNA-Seq. Int J Mol Sci. 2019;20(13):3129. https://doi.org/10.3390/ijms20133129 .
doi: 10.3390/ijms20133129 pubmed: 31248059 pmcid: 6651023
Fu S, Shao J, Paul C, Zhou C, Hartung JS. Transcriptional analysis of sweet orange trees co-infected with ‘Candidatus Liberibacter Asiaticus’ and mild or severe strains of Citrus Tristeza virus. BMC Genomics. 2017;18(1):837. https://doi.org/10.1186/s12864-017-4174-8 .
doi: 10.1186/s12864-017-4174-8 pubmed: 29089035 pmcid: 5664567
Li JX, Hou XJ, Zhu J, Zhou JJ, Huang HB, Yue JQ, Gao JY, Du YX, Hu CX, Hu CG, Zhang JZ. Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits: a hypothetical model. Front Plant Sci. 2017;8:1013. https://doi.org/10.3389/fpls.2017.01013 .
doi: 10.3389/fpls.2017.01013 pubmed: 28659956 pmcid: 5468436
Mitalo OW, Otsuki T, Okada R, Obitsu S, Masuda K, Hojo Y, Matsuura T, Mori IC, Abe D, Asiche WO, Akagi T, Kubo Y, Ushijima K. Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene. J Exp Bot. 2020;71(16):4778–96. https://doi.org/10.1093/jxb/eraa206 .
doi: 10.1093/jxb/eraa206 pubmed: 32374848 pmcid: 7410192
Ramsey JS, Chin EL, Chavez JD, Saha S, Mischuk D, Mahoney J, Mohr J, Robison FM, Mitrovic E, Xu Y, Strickler SR, Fernandez N, Zhong X, Polek M, Godfrey KE, Giovannoni JJ, Mueller LA, Slupsky CM, Bruce JE, Heck M. Longitudinal transcriptomic, proteomic, and metabolomic analysis of Citrus limon response to graft inoculation by Candidatus Liberibacter asiaticus. J Proteome Res. 2020;19(6):2247–63. https://doi.org/10.1021/acs.jproteome.9b00802 .
doi: 10.1021/acs.jproteome.9b00802 pubmed: 32338516 pmcid: 7970439
Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis of Citrus limon infected with Citrus yellow vein clearing virus. BMC Genomics. 2023;24(1):65. https://doi.org/10.1186/s12864-023-09151-5 .
doi: 10.1186/s12864-023-09151-5 pubmed: 36750773 pmcid: 9903606
Wu F, Huang H, Peng M, Lai Y, Ren Q, Zhang J, Huang Z, Yang L, Rensing C, Chen L. Adaptive responses of Citrus grandis leaves to copper toxicity revealed by RNA-Seq and physiology. Int J Mol Sci. 2021;22(21):12023. https://doi.org/10.3390/ijms222112023 .
doi: 10.3390/ijms222112023 pubmed: 34769452 pmcid: 8585100
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317 .
doi: 10.1038/nmeth.3317 pubmed: 25751142
Liao Y, Smyth GK, Shi W. The R package rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47. https://doi.org/10.1093/nar/gkz114 .
doi: 10.1093/nar/gkz114 pubmed: 30783653 pmcid: 6486549
Goldson-Barnaby A, Scaman CH. Purification and characterization of phenylalanine ammonia lyase from trichosporon cutaneum. Enzyme Res. 2013. https://doi.org/10.1155/2013/670702 . :2013:670702.
doi: 10.1155/2013/670702 pubmed: 24159382 pmcid: 3789393
Röther D, Poppe L, Morlock G, Viergutz S, Rétey J. An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Eur J Biochem. 2002;269(12):3065–75. https://doi.org/10.1046/j.1432-1033.2002.02984.x .
doi: 10.1046/j.1432-1033.2002.02984.x pubmed: 12071972
Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C. Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol. 2006;13(12):1317–26. https://doi.org/10.1016/j.chembiol.2006.10.008 .
doi: 10.1016/j.chembiol.2006.10.008 pubmed: 17185227
Baedeker M, Schulz GE. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Structure. 2002;10(1):61–7. https://doi.org/10.1016/s0969-2126(01)00692-x .
doi: 10.1016/s0969-2126(01)00692-x pubmed: 11796111
Song J, Wang Z. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep. 2009;36(5):939–52. https://doi.org/10.1007/s11033-008-9266-8 .
doi: 10.1007/s11033-008-9266-8 pubmed: 18454352
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81. https://doi.org/10.1016/j.tplants.2010.06.005 .
doi: 10.1016/j.tplants.2010.06.005 pubmed: 20674465
Wu W, Zhu S, Zhu L, Wang D, Liu Y, Liu S, Zhang J, Hao Z, Lu Y, Cheng T, Shi J, Chen J. Characterization of the Liriodendron Chinense MYB gene family and its role in abiotic stress response. Front Plant Sci. 2021;12:641280. https://doi.org/10.3389/fpls.2021.641280 .
doi: 10.3389/fpls.2021.641280 pubmed: 34381467 pmcid: 8350534
Qian LH, Wang Y, Chen M, Liu J, Lu RS, Zou X, Sun XQ, Zhang YM. Genome-wide identification and evolutionary analysis of NBS-LRR genes from Secale cereale. Front Genet. 2021;12:771814. https://doi.org/10.3389/fgene.2021.771814 .
doi: 10.3389/fgene.2021.771814 pubmed: 34858486 pmcid: 8630680
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell. 2021;34(2):718–41. https://doi.org/10.1093/plcell/koab281 .
doi: 10.1093/plcell/koab281 pmcid: 8824567
Zhu L, Yin T, Zhang M, Yang X, Wu J, Cai H, Yang N, Li X, Wen K, Chen D, Zhang H, Liu X. Genome-wide identification and expression pattern analysis of the kiwifruit GRAS transcription factor family in response to salt stress. BMC Genomics. 2024;25(1):12. https://doi.org/10.1186/s12864-023-09915-z .
doi: 10.1186/s12864-023-09915-z pubmed: 38166720 pmcid: 10759511
Mattus-Araya E, Guajardo J, Herrera R, Moya-León MA. ABA speeds up the progress of color in developing f. chiloensis fruit through the activation of PAL, CHS and ANS, key genes of the phenylpropanoid/flavonoid and anthocyanin pathways. Int J Mol Sci. 2022;23(7):3854. https://doi.org/10.3390/ijms23073854 .
doi: 10.3390/ijms23073854 pubmed: 35409213 pmcid: 8998795
Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav. 2019;14(8):1613131. https://doi.org/10.1080/15592324.2019.1613131 .
doi: 10.1080/15592324.2019.1613131 pubmed: 31084451 pmcid: 6619938
Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng JK, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen XY, Martin C. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Mol Plant. 2019;12(7):935–50. https://doi.org/10.1016/j.molp.2019.04.002 .
doi: 10.1016/j.molp.2019.04.002 pubmed: 30999079
Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci. 1990;87(22):9057–61. https://doi.org/10.1073/pnas.87.22.9057 .
doi: 10.1073/pnas.87.22.9057 pubmed: 11607118 pmcid: 55100
Song J, Wang Z. RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res. 2011;124(1):183–92. https://doi.org/10.1007/s10265-010-0350-5 .
doi: 10.1007/s10265-010-0350-5 pubmed: 20509039
Daurelio LD, Tondo ML, Romero MS, Merelo P, Cortadi AA, Talón M, Tadeo FR, Orellano EG. Novel insights into the Citrus sinensis nonhost response suggest photosynthesis decline, abiotic stress networks and secondary metabolism modifications. Funct Plant Biol. 2015;42(8):758. https://doi.org/10.1071/FP14307 .
doi: 10.1071/FP14307 pubmed: 32480719
Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:45. https://doi.org/10.3389/fchem.2016.00045 .
doi: 10.3389/fchem.2016.00045 pubmed: 27917379 pmcid: 5114238
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021;22(23):12824. https://doi.org/10.3390/ijms222312824 .
doi: 10.3390/ijms222312824 pubmed: 34884627 pmcid: 8657439
Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, Pradhan S, Kumar A, Chinnusamy V, Kumar P, Sharma RM, Sharma S, Bisht DS, Kumar C. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: a review. Front. Plant Sci. 2022;13:1022167. https://doi.org/10.3389/fpls.2022.1022167 .
doi: 10.3389/fpls.2022.1022167
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J. 2020;18(6):1384–95. https://doi.org/10.1111/pbi.13302 .
doi: 10.1111/pbi.13302 pubmed: 31769589
Dixon RA, Barros J. Lignin biosynthesis: old roads revisited and new roads explored. Open Biol. 2019;9(12):190215. https://doi.org/10.1098/rsob.190215 .
doi: 10.1098/rsob.190215 pubmed: 31795915 pmcid: 6936255
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc. 2012;7(9):1579–89. https://doi.org/10.1038/nprot.2012.06 .
doi: 10.1038/nprot.2012.06 pubmed: 22864199

Auteurs

Tuo Yin (T)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.

Rong Xu (R)

Yuxi Normal University, Yuxi, 653100, China.

Ling Zhu (L)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.

Xiuyao Yang (X)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.

Mengjie Zhang (M)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.

Xulin Li (X)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.

Yinqiang Zi (Y)

Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China.

Ke Wen (K)

Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China.

Ke Zhao (K)

Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China.

Hanbing Cai (H)

Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China.

Xiaozhen Liu (X)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China. 15198729095@swfu.edu.cn.

Hanyao Zhang (H)

Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, China. zhanghanyao@swfu.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH