Comparative analysis of the PAL gene family in nine citruses provides new insights into the stress resistance mechanism of Citrus species.
Citrus PAL gene
Lignin and flavonoid biosynthesis
Stress resistance mechanism
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
28
05
2024
accepted:
23
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
The phenylalanine ammonia-lyase (PAL) gene, a well-studied plant defense gene, is crucial for growth, development, and stress resistance. The PAL gene family has been studied in many plants. Citrus is among the most vital cash crops worldwide. However, the PAL gene family has not been comprehensively studied in most Citrus species, and the biological functions and specific underlying mechanisms are unclear. We identified 41 PAL genes from nine Citrus species and revealed different patterns of evolution among the PAL genes in different Citrus species. Gene duplication was found to be a vital mechanism for the expansion of the PAL gene family in citrus. In addition, there was a strong correlation between the ability of PAL genes to respond to stress and their evolutionary duration in citrus. PAL genes with shorter evolutionary times were involved in more multiple stress responses, and these PAL genes with broad-spectrum resistance were all single-copy genes. By further integrating the lignin and flavonoid synthesis pathways in citrus, we observed that PAL genes contribute to the synthesis of lignin and flavonoids, which enhance the physical defense and ROS scavenging ability of citrus plants, thereby helping them withstand stress. This study provides a comprehensive framework of the PAL gene family in citrus, and we propose a hypothetical model for the stress resistance mechanism in citrus. This study provides a foundation for further investigations into the biological functions of PAL genes in the growth, development, and response to various stresses in citrus.
Sections du résumé
BACKGROUND
BACKGROUND
The phenylalanine ammonia-lyase (PAL) gene, a well-studied plant defense gene, is crucial for growth, development, and stress resistance. The PAL gene family has been studied in many plants. Citrus is among the most vital cash crops worldwide. However, the PAL gene family has not been comprehensively studied in most Citrus species, and the biological functions and specific underlying mechanisms are unclear.
RESULTS
RESULTS
We identified 41 PAL genes from nine Citrus species and revealed different patterns of evolution among the PAL genes in different Citrus species. Gene duplication was found to be a vital mechanism for the expansion of the PAL gene family in citrus. In addition, there was a strong correlation between the ability of PAL genes to respond to stress and their evolutionary duration in citrus. PAL genes with shorter evolutionary times were involved in more multiple stress responses, and these PAL genes with broad-spectrum resistance were all single-copy genes. By further integrating the lignin and flavonoid synthesis pathways in citrus, we observed that PAL genes contribute to the synthesis of lignin and flavonoids, which enhance the physical defense and ROS scavenging ability of citrus plants, thereby helping them withstand stress.
CONCLUSIONS
CONCLUSIONS
This study provides a comprehensive framework of the PAL gene family in citrus, and we propose a hypothetical model for the stress resistance mechanism in citrus. This study provides a foundation for further investigations into the biological functions of PAL genes in the growth, development, and response to various stresses in citrus.
Identifiants
pubmed: 39482587
doi: 10.1186/s12864-024-10938-3
pii: 10.1186/s12864-024-10938-3
doi:
Substances chimiques
Phenylalanine Ammonia-Lyase
EC 4.3.1.24
Plant Proteins
0
Lignin
9005-53-2
Flavonoids
0
Types de publication
Journal Article
Comparative Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1020Subventions
Organisme : Rural Revitalization Science and Technology Project-Rural Revitalization Industry Key Technology Integration demonstration Project
ID : 202304BP090005
Organisme : Yunnan Academician (expert) Workstation Project
ID : 202305AF150020
Organisme : National Natural Science Foundation of China
ID : No. 31760450
Informations de copyright
© 2024. The Author(s).
Références
Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45(1):59–66. https://doi.org/10.1038/ng.2472 .
doi: 10.1038/ng.2472
pubmed: 23179022
Russo R, Sicilia A, Caruso M, Arlotta C, Silvestro SD, Gmitter FG, Nicolosi E, Piero ARL. De Novo transcriptome sequencing of rough lemon leaves (Citrus jambhiri Lush.) In response to Plenodomus tracheiphilus infection. Int J Mol Sci. 2021;22(2):882. https://doi.org/10.3390/ijms22020882 .
doi: 10.3390/ijms22020882
pubmed: 33477297
pmcid: 7830309
Wei L, Wang W, Li T, Chen O, Yao S, Deng L, Zeng K. Genome-wide identification of the CsPAL gene family and functional analysis for strengthening green mold resistance in Citrus fruit. Postharvest Biol Technol. 2023;196:112178. https://doi.org/10.1016/j.postharvbio.2022.112178 .
doi: 10.1016/j.postharvbio.2022.112178
Gaur RK, Verma RK, Khurana SMP. Chap. 2 - genetic engineering of horticultural crops: present and future. In: Rout GR, Peter KV, editors. Genetic engineering of horticultural crops. Cambridge: Academic; 2018. pp. 23–46. https://doi.org/10.1016/B978-0-12-810439-2.00002-7 .
doi: 10.1016/B978-0-12-810439-2.00002-7
Cochrane FC, Davin LB, Lewis NG. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry. 2004;65(11):1557–64. https://doi.org/10.1016/j.phytochem.2004.05.006 .
doi: 10.1016/j.phytochem.2004.05.006
pubmed: 15276452
Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, Chen HC, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR, Chiang VL. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta. 2013;238(3):487–97. https://doi.org/10.1007/s00425-013-1905-1 .
doi: 10.1007/s00425-013-1905-1
pubmed: 23765265
de Jong F, Hanley SJ, Beale MH, Karp A. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. Phytochemistry. 2015;117:90–7. https://doi.org/10.1016/j.phytochem.2015.06.005 .
doi: 10.1016/j.phytochem.2015.06.005
pubmed: 26070140
pmcid: 4560161
Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta. 2012;236(1):313–26. https://doi.org/10.1007/s00425-012-1613-2 .
doi: 10.1007/s00425-012-1613-2
pubmed: 22349733
pmcid: 3382651
He Y, Zhong X, Jiang X, Cong H, Sun H, Qiao F. Characterisation, expression and functional analysis of PAL gene family in Cephalotaxus hainanensis. Plant Physiol Bioch. 2020;156:461–70. https://doi.org/10.1016/j.plaphy.2020.09.030 .
doi: 10.1016/j.plaphy.2020.09.030
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010;153(4):1526–38. https://doi.org/10.1104/pp.110.157370 .
doi: 10.1104/pp.110.157370
pubmed: 20566705
pmcid: 2923909
Zhang F, Wang J, Li X, Zhang J, Liu Y, Chen Y, Yu Q, Li N. Genome-wide identification and expression analyses of phenylalanine ammonia-lyase gene family members from tomato (Solanum lycopersicum) reveal their role in root-knot nematode infection. Front Plant Sci. 2023;14:1204990. https://doi.org/10.3389/fpls.2023.1204990 .
doi: 10.3389/fpls.2023.1204990
pubmed: 37346127
pmcid: 10280380
Pant S, Huang Y. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation. Sci Rep. 2022;12(1):22537. https://doi.org/10.1038/s41598-022-25214-1 .
doi: 10.1038/s41598-022-25214-1
pubmed: 36581623
pmcid: 9800386
Zhang H, Zhang X, Zhao H, Hu J, Wang Z, Yang G, Zhou X, Wan H. Genome-wide identification and expression analysis of phenylalanine ammonia-lyase (PAL) family in rapeseed (Brassica napus L). BMC Plant Biol. 2023;23(1):481. https://doi.org/10.1186/s12870-023-04472-9 .
doi: 10.1186/s12870-023-04472-9
pubmed: 37814209
pmcid: 10563225
Barros J, Dixon RA. Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends Plant Sci. 2020;25(1):66–79. https://doi.org/10.1016/j.tplants.2019.09.011 .
doi: 10.1016/j.tplants.2019.09.011
pubmed: 31679994
Jun SY, Sattler SA, Cortez GS, Vermerris W, Sattler SE, Kang C. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase. Plant Physiol. 2018;176(2):1452–68. https://doi.org/10.1104/pp.17.01608 .
doi: 10.1104/pp.17.01608
pubmed: 29196539
Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot. 2022;73(17):5992–6008. https://doi.org/10.1093/jxb/erac276 .
doi: 10.1093/jxb/erac276
pubmed: 35727860
Qin Q, Shi X, Pei L, Gao X. Induction of phenylalanine ammonia-lyase and lipoxtgenase in cotton seedlings by mechanical wounding and aphid infestation. Prog Nat Sci. 2005;15(5):419–23. https://doi.org/10.1080/10020070512331342330 .
doi: 10.1080/10020070512331342330
He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci. 2020;117(1):271–7. https://doi.org/10.1073/pnas.1902771116 .
doi: 10.1073/pnas.1902771116
pubmed: 31848246
Mo F, Li L, Zhang C, Yang C, Chen G, Niu Y, Si J, Liu T, Sun X, Wang S, Wang D, Chen Q, Chen Y. Genome-wide analysis and expression profiling of the phenylalanine ammonia-lyase gene family in Solanum tuberosum. Int J Mol Sci. 2022;23(12):6833. https://doi.org/10.3390/ijms23126833 .
doi: 10.3390/ijms23126833
pubmed: 35743276
pmcid: 9224352
Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver MJ, Zhang D. The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium Dahliae via phenylpropanoid gene regulation. Plant J. 2023;113(1):75–91. https://doi.org/10.1111/tpj.16035 .
doi: 10.1111/tpj.16035
pubmed: 36416176
Deng B, Wang W, Deng L, Yao S, Ming J, Zeng K. Comparative RNA-seq analysis of citrus fruit in response to infection with three major postharvest fungi. Postharvest Biol Tec. 2018;146:134–46. https://doi.org/10.1016/j.postharvbio.2018.08.012 .
doi: 10.1016/j.postharvbio.2018.08.012
Liu H, Wang X, Liu S, Huang Y, Guo YX, Xie WZ, Liu H, Qamar MTU, Xu Q, Chen LL. Citrus pan-genome to breeding database (CPBD): a comprehensive genome database for Citrus breeding. Mol Plant. 2022;15(10):1503–5. https://doi.org/10.1016/j.molp.2022.08.006 .
doi: 10.1016/j.molp.2022.08.006
pubmed: 36004795
Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P. TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics. 2002;2(6):239–53. https://doi.org/10.1007/s10142-002-0077-z .
doi: 10.1007/s10142-002-0077-z
pubmed: 12444417
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. Int J Biol Macromol. 2024;254(Pt 2):127829. https://doi.org/10.1016/j.ijbiomac.2023.127829 .
doi: 10.1016/j.ijbiomac.2023.127829
pubmed: 37926304
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile of NBS-LRR gene family in sweet orange (Citrus sinensis). Gene. 2023;854:147117. https://doi.org/10.1016/j.gene.2022.147117 .
doi: 10.1016/j.gene.2022.147117
pubmed: 36526123
Sami A, Haider MZ, Shafiq M, Sadiq S, Ahmad F. Genome-wide identification and in-silico expression analysis of CCO gene family in sunflower (Helianthus Annnus) against abiotic stress. Plant Mol Biol. 2024;114(2):34. https://doi.org/10.1007/s11103-024-01433-0 .
doi: 10.1007/s11103-024-01433-0
pubmed: 38568355
pmcid: 10991017
Xue JY, Zhao T, Liu Y, Zhang YX, Shao ZQ. Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes. Front Genet. 2020;10:1286. https://doi.org/10.3389/fgene.2019.01286 .
doi: 10.3389/fgene.2019.01286
pubmed: 31998358
pmcid: 6960632
Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AV, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285 .
doi: 10.1038/nmeth.4285
pubmed: 28481363
pmcid: 5453245
Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023;51(W1):W587–92. https://doi.org/10.1093/nar/gkad359 .
doi: 10.1093/nar/gkad359
pubmed: 37144476
pmcid: 10320113
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009 .
doi: 10.1016/j.molp.2020.06.009
pubmed: 32585190
Shao Y, Zhou Y, Yang L, Mu D, Wilson IW, Zhang Y, Zhu L, Liu X, Luo L, He J, Qiu D, Tang Q. Genome-wide identification of GATA transcription factor family and the effect of different light quality on the accumulation of terpenoid indole alkaloids in Uncaria rhynchophylla. Plant Mol Biol. 2024;114(1):15. https://doi.org/10.1007/s11103-023-01400-1 .
doi: 10.1007/s11103-023-01400-1
pubmed: 38329633
Han P, Yin T, Xi D, Yang X, Zhang M, Zhu L, Zhang H, Liu X. Genome-wide identification of the sweet orange bZIP gene family and analysis of their expression in response to infection by Penicillium Digitatum. Horticulturae. 2023;9(3):393. https://doi.org/10.3390/horticulturae9030393 .
doi: 10.3390/horticulturae9030393
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. https://doi.org/10.1093/nar/gkr1293 .
doi: 10.1093/nar/gkr1293
pubmed: 22217600
pmcid: 3326336
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–26. https://doi.org/10.1093/oxfordjournals.molbev.a040410 .
doi: 10.1093/oxfordjournals.molbev.a040410
pubmed: 3444411
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000;17(1):32–43. https://doi.org/10.1093/oxfordjournals.molbev.a026236 .
doi: 10.1093/oxfordjournals.molbev.a026236
pubmed: 10666704
Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002;18(9):486. https://doi.org/10.1016/s0168-9525(02)02722-1 .
doi: 10.1016/s0168-9525(02)02722-1
pubmed: 12175810
Li N, Wang K, Williams HN, Sun J, Ding C, Leng X, Dong K. Analysis of gene gain and loss in the evolution of predatory bacteria. Gene. 2017;598:63–70. https://doi.org/10.1016/j.gene.2016.10.039 .
doi: 10.1016/j.gene.2016.10.039
pubmed: 27825775
Li Y, Li ZH, Zhang FR, Li S, Gu YB, Tian WJ, Tian WR, Wang JB, Wen J, Li JR. Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants. Plant J. 2023;116(3):823–39. https://doi.org/10.1111/tpj.16411 .
doi: 10.1111/tpj.16411
pubmed: 37522396
Guo P, Qi YP, Huang WL, Yang LT, Huang ZR, Lai NW, Chen LS. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. Ecotoxicol Environ Saf. 2018;158:213–22. https://doi.org/10.1016/j.ecoenv.2018.04.038 .
doi: 10.1016/j.ecoenv.2018.04.038
pubmed: 29704792
Guo P, Qi YP, Yang LT, Lai NW, Ye X, Yang Y, Chen LS. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance. Front Plant Sci. 2017;8:330. https://doi.org/10.3389/fpls.2017.00330 .
doi: 10.3389/fpls.2017.00330
pubmed: 28337215
pmcid: 5340773
Zia K, Rao MJ, Sadaqat M, Azeem F, Fatima K, Qamar MTU, Alshammari A, Alharbi M. Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in Citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Front Genet. 2022;13:1034921. https://doi.org/10.3389/fgene.2022.1034921 .
doi: 10.3389/fgene.2022.1034921
pubmed: 36303546
pmcid: 9593079
Yang LT, Zhou YF, Wang YY, Wu YM, Ye X, Guo JX, Chen LS. Magnesium deficiency induced global transcriptome change in Citrus sinensis leaves revealed by RNA-Seq. Int J Mol Sci. 2019;20(13):3129. https://doi.org/10.3390/ijms20133129 .
doi: 10.3390/ijms20133129
pubmed: 31248059
pmcid: 6651023
Fu S, Shao J, Paul C, Zhou C, Hartung JS. Transcriptional analysis of sweet orange trees co-infected with ‘Candidatus Liberibacter Asiaticus’ and mild or severe strains of Citrus Tristeza virus. BMC Genomics. 2017;18(1):837. https://doi.org/10.1186/s12864-017-4174-8 .
doi: 10.1186/s12864-017-4174-8
pubmed: 29089035
pmcid: 5664567
Li JX, Hou XJ, Zhu J, Zhou JJ, Huang HB, Yue JQ, Gao JY, Du YX, Hu CX, Hu CG, Zhang JZ. Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits: a hypothetical model. Front Plant Sci. 2017;8:1013. https://doi.org/10.3389/fpls.2017.01013 .
doi: 10.3389/fpls.2017.01013
pubmed: 28659956
pmcid: 5468436
Mitalo OW, Otsuki T, Okada R, Obitsu S, Masuda K, Hojo Y, Matsuura T, Mori IC, Abe D, Asiche WO, Akagi T, Kubo Y, Ushijima K. Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene. J Exp Bot. 2020;71(16):4778–96. https://doi.org/10.1093/jxb/eraa206 .
doi: 10.1093/jxb/eraa206
pubmed: 32374848
pmcid: 7410192
Ramsey JS, Chin EL, Chavez JD, Saha S, Mischuk D, Mahoney J, Mohr J, Robison FM, Mitrovic E, Xu Y, Strickler SR, Fernandez N, Zhong X, Polek M, Godfrey KE, Giovannoni JJ, Mueller LA, Slupsky CM, Bruce JE, Heck M. Longitudinal transcriptomic, proteomic, and metabolomic analysis of Citrus limon response to graft inoculation by Candidatus Liberibacter asiaticus. J Proteome Res. 2020;19(6):2247–63. https://doi.org/10.1021/acs.jproteome.9b00802 .
doi: 10.1021/acs.jproteome.9b00802
pubmed: 32338516
pmcid: 7970439
Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis of Citrus limon infected with Citrus yellow vein clearing virus. BMC Genomics. 2023;24(1):65. https://doi.org/10.1186/s12864-023-09151-5 .
doi: 10.1186/s12864-023-09151-5
pubmed: 36750773
pmcid: 9903606
Wu F, Huang H, Peng M, Lai Y, Ren Q, Zhang J, Huang Z, Yang L, Rensing C, Chen L. Adaptive responses of Citrus grandis leaves to copper toxicity revealed by RNA-Seq and physiology. Int J Mol Sci. 2021;22(21):12023. https://doi.org/10.3390/ijms222112023 .
doi: 10.3390/ijms222112023
pubmed: 34769452
pmcid: 8585100
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317 .
doi: 10.1038/nmeth.3317
pubmed: 25751142
Liao Y, Smyth GK, Shi W. The R package rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47. https://doi.org/10.1093/nar/gkz114 .
doi: 10.1093/nar/gkz114
pubmed: 30783653
pmcid: 6486549
Goldson-Barnaby A, Scaman CH. Purification and characterization of phenylalanine ammonia lyase from trichosporon cutaneum. Enzyme Res. 2013. https://doi.org/10.1155/2013/670702 . :2013:670702.
doi: 10.1155/2013/670702
pubmed: 24159382
pmcid: 3789393
Röther D, Poppe L, Morlock G, Viergutz S, Rétey J. An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Eur J Biochem. 2002;269(12):3065–75. https://doi.org/10.1046/j.1432-1033.2002.02984.x .
doi: 10.1046/j.1432-1033.2002.02984.x
pubmed: 12071972
Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C. Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol. 2006;13(12):1317–26. https://doi.org/10.1016/j.chembiol.2006.10.008 .
doi: 10.1016/j.chembiol.2006.10.008
pubmed: 17185227
Baedeker M, Schulz GE. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Structure. 2002;10(1):61–7. https://doi.org/10.1016/s0969-2126(01)00692-x .
doi: 10.1016/s0969-2126(01)00692-x
pubmed: 11796111
Song J, Wang Z. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep. 2009;36(5):939–52. https://doi.org/10.1007/s11033-008-9266-8 .
doi: 10.1007/s11033-008-9266-8
pubmed: 18454352
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81. https://doi.org/10.1016/j.tplants.2010.06.005 .
doi: 10.1016/j.tplants.2010.06.005
pubmed: 20674465
Wu W, Zhu S, Zhu L, Wang D, Liu Y, Liu S, Zhang J, Hao Z, Lu Y, Cheng T, Shi J, Chen J. Characterization of the Liriodendron Chinense MYB gene family and its role in abiotic stress response. Front Plant Sci. 2021;12:641280. https://doi.org/10.3389/fpls.2021.641280 .
doi: 10.3389/fpls.2021.641280
pubmed: 34381467
pmcid: 8350534
Qian LH, Wang Y, Chen M, Liu J, Lu RS, Zou X, Sun XQ, Zhang YM. Genome-wide identification and evolutionary analysis of NBS-LRR genes from Secale cereale. Front Genet. 2021;12:771814. https://doi.org/10.3389/fgene.2021.771814 .
doi: 10.3389/fgene.2021.771814
pubmed: 34858486
pmcid: 8630680
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell. 2021;34(2):718–41. https://doi.org/10.1093/plcell/koab281 .
doi: 10.1093/plcell/koab281
pmcid: 8824567
Zhu L, Yin T, Zhang M, Yang X, Wu J, Cai H, Yang N, Li X, Wen K, Chen D, Zhang H, Liu X. Genome-wide identification and expression pattern analysis of the kiwifruit GRAS transcription factor family in response to salt stress. BMC Genomics. 2024;25(1):12. https://doi.org/10.1186/s12864-023-09915-z .
doi: 10.1186/s12864-023-09915-z
pubmed: 38166720
pmcid: 10759511
Mattus-Araya E, Guajardo J, Herrera R, Moya-León MA. ABA speeds up the progress of color in developing f. chiloensis fruit through the activation of PAL, CHS and ANS, key genes of the phenylpropanoid/flavonoid and anthocyanin pathways. Int J Mol Sci. 2022;23(7):3854. https://doi.org/10.3390/ijms23073854 .
doi: 10.3390/ijms23073854
pubmed: 35409213
pmcid: 8998795
Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav. 2019;14(8):1613131. https://doi.org/10.1080/15592324.2019.1613131 .
doi: 10.1080/15592324.2019.1613131
pubmed: 31084451
pmcid: 6619938
Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng JK, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen XY, Martin C. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Mol Plant. 2019;12(7):935–50. https://doi.org/10.1016/j.molp.2019.04.002 .
doi: 10.1016/j.molp.2019.04.002
pubmed: 30999079
Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci. 1990;87(22):9057–61. https://doi.org/10.1073/pnas.87.22.9057 .
doi: 10.1073/pnas.87.22.9057
pubmed: 11607118
pmcid: 55100
Song J, Wang Z. RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res. 2011;124(1):183–92. https://doi.org/10.1007/s10265-010-0350-5 .
doi: 10.1007/s10265-010-0350-5
pubmed: 20509039
Daurelio LD, Tondo ML, Romero MS, Merelo P, Cortadi AA, Talón M, Tadeo FR, Orellano EG. Novel insights into the Citrus sinensis nonhost response suggest photosynthesis decline, abiotic stress networks and secondary metabolism modifications. Funct Plant Biol. 2015;42(8):758. https://doi.org/10.1071/FP14307 .
doi: 10.1071/FP14307
pubmed: 32480719
Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:45. https://doi.org/10.3389/fchem.2016.00045 .
doi: 10.3389/fchem.2016.00045
pubmed: 27917379
pmcid: 5114238
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021;22(23):12824. https://doi.org/10.3390/ijms222312824 .
doi: 10.3390/ijms222312824
pubmed: 34884627
pmcid: 8657439
Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, Pradhan S, Kumar A, Chinnusamy V, Kumar P, Sharma RM, Sharma S, Bisht DS, Kumar C. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: a review. Front. Plant Sci. 2022;13:1022167. https://doi.org/10.3389/fpls.2022.1022167 .
doi: 10.3389/fpls.2022.1022167
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J. 2020;18(6):1384–95. https://doi.org/10.1111/pbi.13302 .
doi: 10.1111/pbi.13302
pubmed: 31769589
Dixon RA, Barros J. Lignin biosynthesis: old roads revisited and new roads explored. Open Biol. 2019;9(12):190215. https://doi.org/10.1098/rsob.190215 .
doi: 10.1098/rsob.190215
pubmed: 31795915
pmcid: 6936255
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc. 2012;7(9):1579–89. https://doi.org/10.1038/nprot.2012.06 .
doi: 10.1038/nprot.2012.06
pubmed: 22864199