Dense cholinergic projections to auditory and multisensory nuclei of the intercollicular midbrain.
Acetylcholine
Arousal
Brachium of inferior colliculus
Inferior colliculus
Modulation
Reward
Journal
Hearing research
ISSN: 1878-5891
Titre abrégé: Hear Res
Pays: Netherlands
ID NLM: 7900445
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
03
06
2021
revised:
03
09
2021
accepted:
15
09
2021
pubmed:
27
9
2021
medline:
5
2
2022
entrez:
26
9
2021
Statut:
ppublish
Résumé
Cholinergic axons from the pedunculopontine tegmental nucleus (PPT) innervate the inferior colliculus where they are positioned to modulate both excitatory and inhibitory circuits across the central nucleus and adjacent cortical regions. More rostral regions of the auditory midbrain include the nucleus of the brachium of the inferior colliculus (NBIC), the intercollicular tegmentum (ICt) and the rostral pole of the inferior colliculus (ICrp). These regions appear especially important for multisensory integration and contribute to orienting behavior and many aspects of auditory perception. These regions appear to receive cholinergic innervation but little is known about the distribution of cholinergic axons in these regions or the cells that they contact. The present study used immunostaining to examine the distribution of cholinergic axons and then used chemically-specific viral tracing to examine cholinergic projections from the PPT to the intercollicular areas in male and female transgenic rats. Staining with antibodies against vesicular acetylcholine transporter revealed dense cholinergic innervation throughout the NBIC, ICt and ICrp. Deposits of viral vector into the PPT labeled cholinergic axons bilaterally in the NBIC, ICt and ICrp. In each area, the projections were denser on the ipsilateral side. The axons appeared morphologically similar across the three areas. In each area, en passant and terminal boutons from these axons appeared in the neuropil and also in close apposition to cell bodies. Immunostaining with a marker for GABAergic cells suggested that the cholinergic axons likely contact both GABAergic and non-GABAergic cells in the NBIC, ICt and ICrp. Thus, the cholinergic axons could affect multisensory processing by modulating excitatory and inhibitory circuits in the NBIC, ICt and ICrp. The similarity of axons and their targets suggests there may be a common function for cholinergic innervation across the three areas. Given what is known about the PPT, such functions could be associated with arousal, sleep-wake cycle, reward and plasticity.
Identifiants
pubmed: 34564033
pii: S0378-5955(21)00186-6
doi: 10.1016/j.heares.2021.108352
pmc: PMC8568689
mid: NIHMS1741459
pii:
doi:
Substances chimiques
Cholinergic Agents
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
108352Subventions
Organisme : NIDCD NIH HHS
ID : R01 DC004391
Pays : United States
Informations de copyright
Copyright © 2021 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest None.
Références
Brain Behav. 2012 Sep;2(5):628-39
pubmed: 23139908
Behav Brain Res. 2002 Nov 15;136(2):605-10
pubmed: 12429422
Prog Neurobiol. 1991;36(5):363-89
pubmed: 1887068
Brain Res. 2000 Oct 27;881(2):244-7
pubmed: 11036169
Neuroscience. 2009 Apr 21;160(1):103-14
pubmed: 19281878
Anat Embryol (Berl). 1997 Sep;196(3):235-59
pubmed: 9310315
J Neurosci. 2016 Apr 6;36(14):3988-99
pubmed: 27053206
Front Neural Circuits. 2020 Jul 16;14:43
pubmed: 32765226
Anat Rec (Hoboken). 2010 Aug;293(8):1393-9
pubmed: 20665816
Brain Res. 1986 Apr 2;370(1):144-8
pubmed: 3708316
Neuroscience. 2008 Jun 12;154(1):186-95
pubmed: 18222049
J Comp Neurol. 2004 Jan 12;468(3):322-33
pubmed: 14681928
Hear Res. 2019 Dec;384:107824
pubmed: 31670183
Neuroscience. 2008 Jun 12;154(1):218-25
pubmed: 18400412
Brain Res. 1996 Jun 17;724(2):169-79
pubmed: 8828565
Neuroscience. 2011 Apr 14;179:120-30
pubmed: 21277952
J Comp Neurol. 1988 May 22;271(4):577-88
pubmed: 2454973
Brain Struct Funct. 2013 Mar;218(2):455-75
pubmed: 22460939
Neuroscience. 2006 Nov 3;142(4):921-9
pubmed: 16996220
J Physiol. 1990 Oct;429:191-203
pubmed: 2277346
Front Aging Neurosci. 2020 Feb 11;12:27
pubmed: 32116654
Brain Res. 1977 Sep 23;134(1):161-6
pubmed: 912415
Hear Res. 2011 Sep;279(1-2):85-95
pubmed: 21195150
J Neurosci. 1985 May;5(5):1307-15
pubmed: 3998824
J Comp Neurol. 1979 Apr 1;184(3):547-65
pubmed: 422756
Neurobiol Dis. 2019 Aug;128:19-30
pubmed: 29524600
Hear Res. 2021 Mar 15;402:108003
pubmed: 32703637
Brain Res. 1983 Dec 12;288(1-2):13-9
pubmed: 6198023
J Comp Neurol. 1984 Jan 10;222(2):209-36
pubmed: 6699208
Neurosci Biobehav Rev. 2009 Sep;33(8):1178-84
pubmed: 19014967
Hear Res. 1983 Jul;11(1):73-91
pubmed: 6309726
Brain Struct Funct. 2018 May;223(4):1923-1936
pubmed: 29302743
J Neurophysiol. 2011 Jan;105(1):107-16
pubmed: 20980544
J Neurosci. 2009 Apr 8;29(14):4664-74
pubmed: 19357291
Neuron. 2011 Dec 8;72(5):721-33
pubmed: 22153370
J Comp Neurol. 1998 Jan 19;390(3):342-65
pubmed: 9455897
Front Neuroanat. 2012 Apr 03;6:9
pubmed: 22514521
J Comp Neurol. 2020 Nov 1;528(16):2695-2707
pubmed: 32304096
J Neurosci. 2018 Oct 10;38(41):8798-8808
pubmed: 30171090
J Neurol Sci. 2006 Oct 25;248(1-2):234-50
pubmed: 16765383
J Comp Neurol. 1999 Dec 13;415(2):160-74
pubmed: 10545157
J Neurophysiol. 1997 Nov;78(5):2717-31
pubmed: 9356421
J Comp Neurol. 1981 Feb 10;196(1):25-40
pubmed: 7204665
Brain Res. 1984 Aug 6;308(1):166-71
pubmed: 6206918
Brain Res. 1978 May 19;147(1):165-9
pubmed: 656911