Inhibition of calcium/calmodulin (Ca
CAMKII
Chagas disease
arrhythmias
chagasic cardiomyopathy
electrophysiology
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
18
08
2021
received:
24
06
2021
accepted:
19
08
2021
entrez:
27
9
2021
pubmed:
28
9
2021
medline:
13
10
2021
Statut:
ppublish
Résumé
Chagasic cardiomyopathy (CCC) is one of the main causes of heart failure and sudden death in Latin America. To date, there is no available medication to prevent or reverse the onset of cardiac symptoms. CCC occurs in a scenario of disrupted calcium dynamics and enhanced oxidative stress, which combined, may favor the hyper activation of calcium/calmodulin (Ca
Identifiants
pubmed: 34569665
doi: 10.1096/fj.202101060R
doi:
Substances chimiques
Calmodulin
0
Calcium-Calmodulin-Dependent Protein Kinase Type 2
EC 2.7.11.17
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e21901Informations de copyright
© 2021 Federation of American Societies for Experimental Biology.
Références
Nunes MC, Beaton A, Acquatella H, et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation. 2018;138(12). doi:10.1161/CIR.0000000000000599
World Health Organization (WHO). Fact Sheet on Chagas disease. (2018). Accessed September 1, 2021. https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
Manne-Goehler J, Umeh CA, Montgomery SP, Wirtz VJ. Estimating the burden of Chagas disease in the United States. PLoS Negl Trop Dis. 2016;10:e0005033. doi:10.1371/journal.pntd.0005033
Mills RM. Chagas disease: epidemiology and barriers to treatment. Am J Med. 2020;133(11):1262-1265. doi:10.1016/j.amjmed.2020.05.022
Chao C, Leone JL, Vigliano CA. Chagas disease: historic perspective. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165689. doi:10.1016/j.bbadis.2020.165689
Nunes MC, Dones W, Morillo CA, Encina JJ, Ribeiro AL. Chagas disease an overview of clinical and epidemiological aspects. J Am Coll Cardiol. 2013;62:767-776. doi:10.1016/j.jacc.2013.05.046
Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115:1109-1123. doi:10.1161/CIRCULATIONAHA.106.624296
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res. 2012;110:1661-1677. doi:10.1161/CIRCRESAHA.111.243956.CaMKII
Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med. 1991;21:781-788. doi:10.1056/NEJM199103213241201
Zhang T, Brown JH. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res. 2004;63:476-486. doi:10.1016/j.cardiores.2004.04.026
Cuello F, Lorenz K. Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation? Basic Res Cardiol. 2016;111:66. doi:10.1007/s00395-016-0582-1
Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23-49. doi:10.1146/annurev.physiol.70.113006.100455
Roman-Campos D, Sales-Júnior P, Duarte H, et al. Cardiomyocyte dysfunction during the chronic phase of Chagas disease. Mem Inst Oswaldo Cruz. 2013;108:243-245.
Andrade S, Grimaud J. Chronic murine myocarditis due to Trypanosoma cruzi-an ultrastructural study and immunochemical characterization of cardiac interstitial matrix. Mem Inst Oswaldo Cruz. 1986;81:29-41.
Roman-Campos D, Duarte H, Sales PJ, et al. Changes in cellular contractility and cytokines profile during Trypanosoma cruzi infection in mice. Basic Res Cardiol. 2009;104(3):238-246. doi:10.1007/s00395-009-0776-x
Wen JJ, Garg N. Oxidative modification of mitochondrial respiratory complexes in response to the stress of Trypanosoma cruzi infection. Free Radic Biol Med. 2004;37:2072-2081. doi:10.1016/j.freeradbiomed.2004.09.011
Wen J, Vyatkina G, Garg N. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radic Biol Med. 2004;37:1821-1833. doi:10.1016/j.freeradbiomed.2004.08.018
Roman-Campos D, Sales-junior P, Duarte H, et al. Novel insights into the development of chagasic cardiomyopathy: role of PI3Kinase/NO axis. Int J Cardiol. 2013;167:3011-3020. doi:10.1016/j.ijcard.2012.09.020
Santos-Miranda A, Joviano-Santos JV, Ribeiro GA, et al. Reactive oxygen species and nitric oxide imbalances lead to in vivo and in vitro arrhythmogenic phenotype in acute phase of experimental Chagas disease. PLoS Pathog. 2020;16:1-27. doi:10.1371/journal.ppat.1008379
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev. 2011;91:889-915. doi:10.1152/physrev.00018.2010
Howe CJ, Lahair MM, McCubrey JA, Franklin RA. Redox regulation of the calcium/calmodulin-dependent protein kinases. J Biol Chem. 2004;279:44573-44581. doi:10.1074/jbc.M404175200
Mijares A, Espinosa R, Adams J, Lopez JR. Increases in [IP3]i aggravates diastolic [Ca2+] and contractile dysfunction in Chagas' human cardiomyocytes. PLoS Negl Trop Dis. 2020;14:e0008162. doi:10.1371/journal.pntd.0008162
López JR, Espinosa R, Landazuru P, Linares N, Allen P, Mijares A. Dysfunction of diastolic [Ca2+] in cardiomyocytes isolated from chagasic patients. Rev Esp Cardiol. 2011;64:456-462. doi:10.1016/j.recesp.2011.01.008
Shioya T. A simple technique for isolating healthy heart cells from mouse models. J Physiol Sci. 2007;57:327-335. doi:10.2170/physiolsci.RP010107
Ljubojević S, Walther S, Asgarzoei M, Sedej S, Pieske B, Kockskämper J. In situ calibration of nucleoplasmic versus cytoplasmic Ca2+ concentration in adult cardiomyocytes. Biophys J. 2011;100:2356-2366. doi:10.1016/j.bpj.2011.03.060
Chu P-Y, Joshi MS, Horlock D, Kiriazis H, Kaye DM. CXCR4 antagonism reduces cardiac fibrosis and improves cardiac performance in dilated cardiomyopathy. Front Pharmacol. 2019;10:117. doi:10.3389/fphar.2019.00117
Rassi AJ, Rassi A, Marin-Neto JA. Chagas heart disease: pathophysiologic mechanisms, prognostic factors and risk stratification. Mem Inst Oswaldo Cruz. 2009;104(suppl 1):152-158. doi:10.1590/s0074-02762009000900021
Machado FS, Tanowitz HB, Ribeiro AL. Pathogenesis of chagas cardiomyopathy: role of inflammation and oxidative stress. J Am Heart Assoc. 2013;2:e000539. doi:10.1161/JAHA.113.000539
Erickson JR, Joiner MA, Guan X, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133:462-474. doi:10.1016/j.cell.2008.02.048
Lai Y, Nairn AC, Gorelick F, Greengard P. Ca2+/calmodulin-dependent protein kinase II: identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence. Proc Natl Acad Sci U S A. 1987;84:5710-5714. doi:10.1073/pnas.84.16.5710
Michailowsky V, Silva NM, Rocha CD, Vieira LQ, Lannes-Vieira J, Gazzinelli RT. Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol. 2001;159:1723-1733. doi:10.1016/s0002-9440(10)63019-2
Ribeiro ALP, Marcolino MS, Prineas RJ, Lima-Costa MF. Electrocardiographic abnormalities in elderly Chagas disease patients: 10-year follow-up of the Bambui Cohort Study of Aging. J Am Heart Assoc. 2014;3:e000632. doi:10.1161/JAHA.113.000632
Ribeiro AL, Nunes MP, Teixeira MM, Rocha MOC. Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol. 2012;9:576-589. doi:10.1038/nrcardio.2012.109
Benchimol-Barbosa PR, Barbosa-Filho J. Atrial mechanical remodeling and new onset atrial fibrillation in chronic Chagas' heart disease. Int J Cardiol. 2008;127:e113-e115. doi:10.1016/j.ijcard.2007.04.103
Enriquez A, Conde D, Femenia F, et al. Relation of interatrial block to new-onset atrial fibrillation in patients with Chagas cardiomyopathy and implantable cardioverter-defibrillators. Am J Cardiol. 2014;113:1740-1743. doi:10.1016/j.amjcard.2014.02.036
Marcolino MS, Palhares DM, Ferreira LR, Ribeiro AL. Electrocardiogram and Chagas disease: a large population database of primary care patients. Glob Heart. 2015;10:167-172. doi:10.1016/j.gheart.2015.07.001
Maguire JH, Hoff R, Sherlock I, et al. Cardiac morbidity and mortality due to Chagas' disease: prospective electrocardiographic study of a Brazilian community. Circulation. 1987;75:1140-1145. doi:10.1161/01.cir.75.6.1140
Ribeiro AL, Sabino EC, Marcolino MS, et al. Electrocardiographic abnormalities in Trypanosoma cruzi seropositive and seronegative former blood donors. PLoS Negl Trop Dis. 2013;7:e2078. doi:10.1371/journal.pntd.0002078
Dias JC, Kloetzel K. The prognostic value of the electrocardiographic features of chronic Chagas' disease. Rev Inst Med Trop Sao Paulo. 1968;10:158-162.
Nolasco JB, Dahlen RW. A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol. 1968;25:191-196. doi:10.1152/jappl.1968.25.2.191
Eisner DA, Li Y, O'Neill SC. Alternans of intracellular calcium: mechanism and significance. Hear Rhythm. 2006;3:743-745. doi:10.1016/j.hrthm.2005.12.020
Laurita KR, Rosenbaum DS. Cellular mechanisms of arrhythmogenic cardiac alternans. Prog Biophys Mol Biol. 2008;97:332-347. doi:10.1016/j.pbiomolbio.2008.02.014
Weiss JN, Nivala M, Garfinkel A, Qu Z. Alternans and arrhythmias: from cell to heart. Circ Res. 2011;108:98-112. doi:10.1161/CIRCRESAHA.110.223586
Wit AL, Janse MJ. Experimental models of ventricular tachycardia and fibrillation caused by ischemia and infarction. Circulation. 1992;85:I32-I42.
Wit AL, Wellens HJ, Josephson ME. Electrophysiological Foundations of Cardiac Arrhythmias: A Bridge between Basic Mechanisms and Clinical Electrophysiology; Cardiotext Publishing; 2017.
Vilar-Pereira G, Carneiro VC, Mata-Santos H, et al. Resveratrol reverses functional Chagas heart disease in mice. PLoS Pathog. 2016;12:1-19. doi:10.1371/journal.ppat.1005947
Chelu MG, Sarma S, Sood S, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119:1940-1951. doi:10.1172/jci37059
Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134-1144. doi:10.1161/CIRCRESAHA.109.203836
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol. 2018;113:29. doi:10.1007/s00395-018-0688-8
Wong MH, Samal AB, Lee M, et al. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca2+/CaM. J Mol Biol. 2019;431:1440-1459. doi:10.1016/j.jmb.2019.02.001
Johnson CN, Pattanayek R, Potet F, et al. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of Na(V)1.5 and RyR2 function. Cell Calcium. 2019;82:102063. doi:10.1016/j.ceca.2019.102063
Lindegger N, Hagen BM, Marks AR, Lederer WJ, Kass RS. Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine. J Mol Cell Cardiol. 2009;47:326-334. doi:10.1016/j.yjmcc.2009.04.003
Fredj S, Lindegger N, Sampson KJ, Carmeliet P, Kass RS. Altered Na+ channels promote pause-induced spontaneous diastolic activity in long QT syndrome type 3 myocytes. Circ Res. 2006;99:1225-1232. doi:10.1161/01.RES.0000251305.25604.b0
Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM. Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res. 1999;85:1009-1019. doi:10.1161/01.res.85.11.1009
Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res. 2001;88:1159-1167. doi:10.1161/hh1101.091193
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2:a003996. doi:10.1101/cshperspect.a003996
Meissner G. Regulation of ryanodine receptor ion channels through posttranslational modifications. Curr Top Membr. 2010;66:91-113. doi:10.1016/S1063-5823(10)66005-X
Nascimento CAS, Gomes VAM, Silva SK, et al. Left atrial and left ventricular diastolic function in chronic Chagas disease. J Am Soc Echocardiogr. 2013;26:1424-1433. doi:10.1016/j.echo.2013.08.018
Barros MVL, Machado FS, Ribeiro ALP, da Costa Rocha MO. Diastolic function in Chagas' disease: an echo and tissue Doppler imaging study. Eur J Echocardiogr. 2004;5:182-188. doi:10.1016/S1525-2167(03)00078-7
Rincon LG, Rocha MO, Pires MT, et al. Clinical profile of Chagas and non-Chagas' disease patients with cardiac pacemaker. Rev Soc Bras Med Trop. 2006;39:245-249. doi:10.1590/s0037-86822006000300003