Can We Predict the Isosymmetric Phase Transition? Application of DFT Calculations to Study the Pressure Induced Transformation of Chlorothiazide.
CASTEP
DFT
ab initio molecular dynamics
aiMD
phase transition
polymorphism
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
18 Sep 2021
18 Sep 2021
Historique:
received:
27
07
2021
revised:
03
09
2021
accepted:
15
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
20
11
2021
Statut:
epublish
Résumé
Isosymmetric structural phase transition (IPT, type 0), in which there are no changes in the occupation of Wyckoff positions, the number of atoms in the unit cell, and the space group symmetry, is relatively uncommon. Chlorothiazide, a diuretic agent with a secondary function as an antihypertensive, has been proven to undergo pressure-induced IPT of Form I to Form II at 4.2 GPa. For that reason, it has been chosen as a model compound in this study to determine if IPT can be predicted in silico using periodic DFT calculations. The transformation of Form II into Form I, occurring under decompression, was observed in geometry optimization calculations. However, the reverse transition was not detected, although the calculated differences in the DFT energies and thermodynamic parameters indicated that Form II should be more stable at increased pressure. Finally, the IPT was successfully simulated using ab initio molecular dynamics calculations.
Identifiants
pubmed: 34576265
pii: ijms221810100
doi: 10.3390/ijms221810100
pmc: PMC8465122
pii:
doi:
Substances chimiques
Antihypertensive Agents
0
Diuretics
0
Chlorothiazide
77W477J15H
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Warszawski Uniwersytet Medyczny
ID : GW/F/16
Références
J Pharm Sci. 2020 Sep;109(9):2640-2653
pubmed: 32502473
Chem Rev. 2020 Nov 25;120(22):12343-12356
pubmed: 33166127
Phys Rev B Condens Matter. 1992 Sep 15;46(11):6671-6687
pubmed: 10002368
Phys Rev Lett. 2008 Apr 4;100(13):136406
pubmed: 18517979
J Comput Chem. 2018 May 30;39(14):853-861
pubmed: 29315751
Molecules. 2020 Dec 23;26(1):
pubmed: 33374602
Phys Chem Chem Phys. 2019 Nov 28;21(44):24333-24344
pubmed: 31675024
Phys Rev Lett. 1992 Aug 17;69(7):1077-1080
pubmed: 10047117
Pharmaceutics. 2020 Jan 01;12(1):
pubmed: 31906357
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
J Comput Chem. 2006 Nov 30;27(15):1787-99
pubmed: 16955487
J Pediatr Pharmacol Ther. 2020 Jan-Feb;25(1):31-38
pubmed: 31897073
J Comput Chem. 2018 Jul 15;39(19):1335-1343
pubmed: 29504133
J Phys Chem B. 2020 Jan 9;124(1):1-10
pubmed: 31794209
Phys Rev Lett. 2009 Feb 20;102(7):073005
pubmed: 19257665
J Comput Chem. 2018 Jul 15;39(19):1300-1306
pubmed: 29532492
Solid State Nucl Magn Reson. 2019 Feb;97:17-24
pubmed: 30508738
Chem Sci. 2015 Jun 1;6(6):3289-3301
pubmed: 28757994
Molecules. 2015 Oct 15;20(10):18759-76
pubmed: 26501244
Int J Mol Sci. 2009 Jun 04;10(6):2633-61
pubmed: 19582222
J Chem Phys. 2013 Jun 7;138(21):214505
pubmed: 23758386
Pharmaceutics. 2020 May 01;12(5):
pubmed: 32369915