Walking around Ribosomal Small Subunit: A Possible "Tourist Map" for Electron Holes.
DFT
RNA
allostery
charge transport
ribosome
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
09 Sep 2021
09 Sep 2021
Historique:
received:
22
07
2021
revised:
27
08
2021
accepted:
02
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
15
12
2021
Statut:
epublish
Résumé
Despite several decades of research, the physics underlying translation-protein synthesis at the ribosome-remains poorly studied. For instance, the mechanism coordinating various events occurring in distant parts of the ribosome is unknown. Very recently, we suggested that this allosteric mechanism could be based on the transport of electric charges (electron holes) along RNA molecules and localization of these charges in the functionally important areas; this assumption was justified using tRNA as an example. In this study, we turn to the ribosome and show computationally that holes can also efficiently migrate within the whole ribosomal small subunit (SSU). The potential sites of charge localization in SSU are revealed, and it is shown that most of them are located in the functionally important areas of the ribosome-intersubunit bridges, Fe
Identifiants
pubmed: 34576950
pii: molecules26185479
doi: 10.3390/molecules26185479
pmc: PMC8467113
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Russian Foundation for Basic Research
ID : 19-32-60081
Références
Sci Rep. 2016 May 26;6:26485
pubmed: 27225526
Biochim Biophys Acta. 2015 Jun;1853(6):1253-71
pubmed: 25655665
Science. 2021 Jul 9;373(6551):236-241
pubmed: 34083449
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14002-6
pubmed: 15381780
Q Rev Biophys. 2017 Jan;50:e12
pubmed: 29233224
J Biomol Struct Dyn. 2011 Jun;28(6):949-53
pubmed: 21469755
Science. 2001 Oct 19;294(5542):567-71
pubmed: 11641491
Chem Rev. 2016 Nov 23;116(22):13279-13412
pubmed: 27723323
Phys Chem Chem Phys. 2017 Sep 27;19(37):25478-25486
pubmed: 28900645
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716):
pubmed: 28138068
Nat Chem. 2018 Aug;10(8):873-880
pubmed: 29915346
J Mol Biol. 2016 May 22;428(10 Pt B):2146-64
pubmed: 26880335
Nat Commun. 2019 Jun 7;10(1):2519
pubmed: 31175275
Science. 2017 Feb 24;355(6327):
pubmed: 28232525
Q Rev Biophys. 2009 Aug;42(3):159-200
pubmed: 20025795
Nature. 2000 Sep 21;407(6802):327-39
pubmed: 11014182
J Phys Chem A. 2007 Mar 1;111(8):1554-61
pubmed: 17279730
Phys Chem Chem Phys. 2021 Mar 28;23(12):7037-7047
pubmed: 33448272
J Phys Chem B. 2009 May 21;113(20):7367-71
pubmed: 19374360
Science. 2005 Nov 4;310(5749):827-34
pubmed: 16272117
Phys Chem Chem Phys. 2008 Jan 7;10(1):121-7
pubmed: 18075690
EMBO J. 2008 Dec 17;27(24):3322-31
pubmed: 19020518
Turk J Biol. 2018 Oct 25;42(5):392-404
pubmed: 30930623
Phys Chem Chem Phys. 2019 Jun 5;21(22):11578-11588
pubmed: 30968108
Nat Commun. 2017 Feb 08;8:14285
pubmed: 28176782
Phys Chem Chem Phys. 2018 Sep 12;20(35):23123-23131
pubmed: 30168547
Wiley Interdiscip Rev RNA. 2016 Sep;7(5):620-36
pubmed: 27117863
RNA Biol. 2016 May 3;13(5):524-30
pubmed: 26786136
ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9507-9519
pubmed: 32009377
Phys Chem Chem Phys. 2018 Nov 21;20(45):28920-28928
pubmed: 30422138
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13327-32
pubmed: 16938893
Chem Rev. 2015 Oct 28;115(20):11191-238
pubmed: 26485093
J Biomol Struct Dyn. 2014 Apr;32(4):532-45
pubmed: 23582046
J Chem Phys. 2013 Jul 7;139(1):014707
pubmed: 23822320
Phys Chem Chem Phys. 2010 Sep 28;12(36):11103-13
pubmed: 20689881
Nat Struct Mol Biol. 2016 Apr;23(4):342-8
pubmed: 26999556
Coord Chem Rev. 2011 Apr 1;255(7-8):635-648
pubmed: 21528017
Biochimie. 2019 Dec;167:179-186
pubmed: 31605738
Mol Biol (Mosk). 2018 Nov-Dec;52(6):921-934
pubmed: 30633236
J Phys Chem B. 2010 Apr 22;114(15):5196-205
pubmed: 20353252