Graph Attention Feature Fusion Network for ALS Point Cloud Classification.
ALS point cloud
classification
deep learning
graph attention mechanism
receptive field
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
15 Sep 2021
15 Sep 2021
Historique:
received:
27
07
2021
revised:
12
09
2021
accepted:
13
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
30
9
2021
Statut:
epublish
Résumé
Classification is a fundamental task for airborne laser scanning (ALS) point cloud processing and applications. This task is challenging due to outdoor scenes with high complexity and point clouds with irregular distribution. Many existing methods based on deep learning techniques have drawbacks, such as complex pre/post-processing steps, an expensive sampling cost, and a limited receptive field size. In this paper, we propose a graph attention feature fusion network (GAFFNet) that can achieve a satisfactory classification performance by capturing wider contextual information of the ALS point cloud. Based on the graph attention mechanism, we first design a neighborhood feature fusion unit and an extended neighborhood feature fusion block, which effectively increases the receptive field for each point. On this basis, we further design a neural network based on encoder-decoder architecture to obtain the semantic features of point clouds at different levels, allowing us to achieve a more accurate classification. We evaluate the performance of our method on a publicly available ALS point cloud dataset provided by the International Society for Photogrammetry and Remote Sensing (ISPRS). The experimental results show that our method can effectively distinguish nine types of ground objects. We achieve more satisfactory results on different evaluation metrics when compared with the results obtained via other approaches.
Identifiants
pubmed: 34577396
pii: s21186193
doi: 10.3390/s21186193
pmc: PMC8473412
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : the National Key R&D Program of China
ID : 2018YFB2100702
Organisme : the National Natural Science Foundation of China
ID : 42071441
Organisme : the National Natural Science Foundation of China
ID : 42061036
Organisme : the National Natural Science Foundation of China
ID : 41861031
Organisme : the Smart Guangzhou Spatio-temporal Information Cloud Platform Construction
ID : GZIT2016-A5-147
Références
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Sensors (Basel). 2018 Oct 07;18(10):
pubmed: 30301263