Codon optimality in cancer.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
11 2021
Historique:
received: 16 07 2021
accepted: 10 09 2021
revised: 24 08 2021
pubmed: 30 9 2021
medline: 30 12 2021
entrez: 29 9 2021
Statut: ppublish

Résumé

A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.

Identifiants

pubmed: 34584217
doi: 10.1038/s41388-021-02022-x
pii: 10.1038/s41388-021-02022-x
pmc: PMC8585667
doi:

Substances chimiques

Codon 0
RNA, Messenger 0
RNA, Transfer 9014-25-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

6309-6320

Subventions

Organisme : Medical Research Council
ID : MC_EX_G0902052
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_A600_1024
Pays : United Kingdom
Organisme : Cancer Research UK (CRUK)
ID : A29252

Informations de copyright

© 2021. The Author(s).

Références

Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting transcription factors for cancer treatment. 23, Molecules. 2018;23:1479.
pmcid: 6100431 doi: 10.3390/molecules23061479
Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20.
pubmed: 24071849 pmcid: 3919969 doi: 10.1038/ng.2764
Schwanhüusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.
doi: 10.1038/nature10098
Griseri P, Pagès G. Regulation of the mRNA half-life in breast cancer. World J Clin Oncol. 2014;5:323–34.
pubmed: 25114848 pmcid: 4127604 doi: 10.5306/wjco.v5.i3.323
Perron G, Jandaghi P, Solanki S, Safisamghabadi M, Storoz C, Karimzadeh M, et al. A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes. Cell Rep. 2018;23:1639–50.
pubmed: 29742422 doi: 10.1016/j.celrep.2018.04.031
Lee LJ, Papadopoli D, Jewer M, del Rincon S, Topisirovic I, Lawrence MG. et al.Cancer plasticity: the role of mRNA translation.Trends Cancer. 2021;2:134–45.
doi: 10.1016/j.trecan.2020.09.005
Fan S, Ramalingam SS, Kauh J, Xu Z, Khuri FR, Sun S. Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther. 2009;8:1463–9.
pubmed: 19483468 doi: 10.4161/cbt.8.15.8960
Li Y, Fan S, Koo J, Yue P, Chen Z, Owonikoko TK, et al. Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer. Cancer Biol Ther. 2012;13:272–80.
pubmed: 22236867 pmcid: 3679095 doi: 10.4161/cbt.18923
Silvera D, Arju R, Darvishian F, Levine PH, Zolfaghari L, Goldberg J, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Publ Gr. 2009;11:903–8.
Vaklavas C, Blume SW.Grizzle WE Translational dysregulation in cancer: Molecular insights and potential clinical applications in biomarker development.Front Oncol. 2017;7:158.
pubmed: 28798901 pmcid: 5526920 doi: 10.3389/fonc.2017.00158
Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015;14:261–78.
pubmed: 25743081 doi: 10.1038/nrd4505
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.
pubmed: 27313038 pmcid: 7422601 doi: 10.1126/science.aad9868
Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19:158–74.
pubmed: 29165424 doi: 10.1038/nrm.2017.103
Schuster SL, Hsieh AC. The Untranslated Regions of mRNAs in Cancer. Trends in Cancer. 2019;5:245–62.
pubmed: 30961831 pmcid: 6465068 doi: 10.1016/j.trecan.2019.02.011
Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K. et al. The malignant phenotype in breast cancer is driven by eIf4A1-mediated changes in the translational landscape. Cell Death Dis. 2015;6:e1603.
pubmed: 25611378 pmcid: 4669741 doi: 10.1038/cddis.2014.542
Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014;513:65–70.
pubmed: 25079319 pmcid: 4492470 doi: 10.1038/nature13485
Rubio CA, Weisburd B, Holderfield M, Arias C, Fang E, Derisi JL. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol. 2014;15:476.
pubmed: 25273840 pmcid: 4203936 doi: 10.1186/s13059-014-0476-1
Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.
pubmed: 29263891 pmcid: 5661652 doi: 10.1038/sigtrans.2015.4
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer MicroRNA target sites. Science (80-). 2008;320:1643–7. 3
doi: 10.1126/science.1155390
Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci. 2009;106:7028–33.
pubmed: 19372383 pmcid: 2669788 doi: 10.1073/pnas.0900028106
Gruber AR, Martin G, Müller P, Schmidt A, Gruber AJ, Gumienny R, et al. Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat Commun. 2014;5:1–10. 2014 51
doi: 10.1038/ncomms6465
Hoffman Y, Bublik DR, Ugalde AP, Elkon R, Biniashvili T, Agami R. et al. 3’UTR Shortening potentiates MicroRNA-based repression of pro-differentiation genes in proliferating human cells. PLoS Genet. 2016;12:e1005879.
pubmed: 26908102 pmcid: 4764332 doi: 10.1371/journal.pgen.1005879
Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A. Differential genome-wide profiling of tandem 3’ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011;21:741–7.
pubmed: 21474764 pmcid: 3083091 doi: 10.1101/gr.115295.110
Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. Alternative polyadenylation in stem cell self-renewal and differentiation. Trends Mol Med. 2021;27:660–72.
pubmed: 33985920 doi: 10.1016/j.molmed.2021.04.006
Rudorf S, Thommen M, Rodnina MV, Lipowsky R. Deducing the Kinetics of Protein Synthesis In Vivo from the Transition Rates Measured In Vitro. PLoS Comput Biol. 2014;10:e1003909.
pubmed: 25358034 pmcid: 4214572 doi: 10.1371/journal.pcbi.1003909
Rudorf S, Lipowsky R. Protein synthesis in E. coli: dependence of codon-specific elongation on tRNA concentration and codon usage. PLoS One. 2015;10:e0134994.
pubmed: 26270805 pmcid: 4535986 doi: 10.1371/journal.pone.0134994
Trösemeier JH, Rudorf S, Loessner H, Hofner B, Reuter A, Schulenborg T, et al. Optimizing the dynamics of protein expression. Sci Rep. 2019;9:1–15.
doi: 10.1038/s41598-019-43857-5
Gamble CE, Brule CE, Dean KM, Fields S, Grayhack EJ. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell. 2016;166:679–90.
pubmed: 27374328 pmcid: 4967012 doi: 10.1016/j.cell.2016.05.070
Collart MA, Weiss B. Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res. 2019;48:1043–55.
pmcid: 7026645 doi: 10.1093/nar/gkz763
Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell. 2015;59:744–54.
pubmed: 26321254 pmcid: 4561030 doi: 10.1016/j.molcel.2015.07.018
Radhakrishnan A, Chen Y, Martin S, Alhusaini N, Green R, Coller J, et al. The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality article The DEAD-Box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell 2016;167:122–128.e9.
pubmed: 27641505 pmcid: 5635654 doi: 10.1016/j.cell.2016.08.053
Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016;44:D184–9.
pubmed: 26673694 doi: 10.1093/nar/gkv1309
Torres AG, Pineyro D, Filonava L, Stracker TH, Batlle E, Ribas de Pouplana L. A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Lett. 2014;588:4279–86.
pubmed: 25263703 doi: 10.1016/j.febslet.2014.09.025
Ranjan N, Rodnina MV. TRNA wobble modifications and protein homeostasis. Translation. 2016;4:e1143076.
pubmed: 27335723 pmcid: 4909423 doi: 10.1080/21690731.2016.1143076
Deng W, Babu IR, Su D, Yin S, Begley TJ, Dedon PC. Trm9-catalyzed tRNA modifications regulate global protein expression by codon-biased translation. PLoS Genet. 2015;11:e1005706.
pubmed: 26670883 pmcid: 4689569 doi: 10.1371/journal.pgen.1005706
Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep. 2016 ;14:1787–99.
pubmed: 26876183 pmcid: 4767672 doi: 10.1016/j.celrep.2016.01.043
Brule CE, Grayhack EJ. Synonymous Codons: Choose Wisely for Expression. Trends Genet. 2017;33:283–97.
pubmed: 28292534 pmcid: 5409834 doi: 10.1016/j.tig.2017.02.001
Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci USA. 2018;115:E4940–9.
pubmed: 29735666 pmcid: 6003480 doi: 10.1073/pnas.1719375115
Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell. 2014;158:1281–92.
doi: 10.1016/j.cell.2014.08.011
Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell. 2016;165:1416–27.
pubmed: 27259150 pmcid: 4915377 doi: 10.1016/j.cell.2016.05.046
Zhang Z, Ye Y, Gong J, Ruan H, Liu CJ, Xiang Y, et al. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun Biol. 2018;1(Dec):1–11.
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. 2017;;19(Oct):20–30. 2017 191
pubmed: 29018283 pmcid: 6594389
Sharp PM, Tuohy TMF, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986;14:5125–43.
pubmed: 3526280 pmcid: 311530 doi: 10.1093/nar/14.13.5125
dos Reis M, Savva R, Wernisch L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 2004;32:5036–44.
pubmed: 15448185 pmcid: 521650 doi: 10.1093/nar/gkh834
Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, et al. Codon optimality is a major determinant of mRNA stability. Cell 2015;160:1111–24.
pubmed: 25768907 pmcid: 4359748 doi: 10.1016/j.cell.2015.02.029
Rocha EPC. Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res. 2004;14:2279–86.
pubmed: 15479947 pmcid: 525687 doi: 10.1101/gr.2896904
Carneiro RL, Requião RD, Rossetto S, Domitrovic T, Palhano FL. Codon stabilization coefficient as a metric to gain insights into mRNA stability and codon bias and their relationships with translation. Nucleic Acids Res. 2019;47:2216–28.
pubmed: 30698781 pmcid: 6412131 doi: 10.1093/nar/gkz033
Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. Translational efficiency across healthy and tumor tissues is proliferation‐related. Mol Syst Biol. 2021;17:e10097.
pubmed: 33759329 pmcid: 7988298 doi: 10.15252/msb.202010097
Torrent M, Chalancon G, De Groot NS, Wuster A, Madan Babu M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci Signal. 2018;11:eaat6409.
pubmed: 30181241 pmcid: 6130803 doi: 10.1126/scisignal.aat6409
Dittmar KA, Goodenbour JM, Pan T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2006;2:2107–15.
doi: 10.1371/journal.pgen.0020221
Dhindsa RS, Copeland BR, Mustoe AM, Goldstein DB. Natural selection shapes codon usage in the human genome. Am J Hum Genet. 2020;107:83–95.
pubmed: 32516569 pmcid: 7332603 doi: 10.1016/j.ajhg.2020.05.011
Novoa EM, Jungreis I, Jaillon O, Kellis M, Leitner T. Elucidation of codon usage signatures across the domains of life. Mol Biol Evol. 2019;36:2328–39.
pubmed: 31220870 pmcid: 6759073 doi: 10.1093/molbev/msz124
Komar AA. The Yin and Yang of codon usage. Hum Mol Genet. 2016;25:R77–85.
pubmed: 27354349 pmcid: 6372012 doi: 10.1093/hmg/ddw207
Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12:32–42.
pubmed: 21102527 doi: 10.1038/nrg2899
Xu Y, Ma P, Shah P, Rokas A, Liu Y, Johnson CH. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature. 2013;495:116–20.
pubmed: 23417065 pmcid: 3593822 doi: 10.1038/nature11942
Najafabadi HS, Goodarzi H, Salavati R. Universal function-specificity of codon usage. Nucleic Acids Res. 2009;37(Sep):7014–23.
pubmed: 19773421 pmcid: 2790905 doi: 10.1093/nar/gkp792
Guimaraes JC, Mittal N, Gnann A, Jedlinski D, Riba A, Buczak K, et al. A rare codon-based translational program of cell proliferation. Genome Biol. 2020;21:44.
pubmed: 32102681 pmcid: 7045563 doi: 10.1186/s13059-020-1943-5
Bornelöv S, Selmi T, Flad S, Dietmann S, Frye M.Dietmann S, Frye M Codon usage optimization in pluripotent embryonic stem cells.Genome Biol.2019;20:119.
pubmed: 31174582 pmcid: 6555954 doi: 10.1186/s13059-019-1726-z
Bornelöv S, Selmi T, Flad S, Dietmann S, Frye M. Codon usage optimization in pluripotent embryonic stem cells. Genome Biol. 2019;20:119.
pubmed: 31174582 pmcid: 6555954 doi: 10.1186/s13059-019-1726-z
Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO. Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA. 2002;99:5860–5.
pubmed: 11972065 pmcid: 122867 doi: 10.1073/pnas.092538799
Boël G, Letso R, Neely H, Price WN, Wong KH, Su M, et al. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 2016;529:358–63.
pubmed: 26760206 pmcid: 5054687 doi: 10.1038/nature16509
Harigaya Y, Parker R. The link between adjacent codon pairs and mRNA stability. BMC Genomics. 2017;18:364.
pubmed: 28486986 pmcid: 5424319 doi: 10.1186/s12864-017-3749-8
Webster MW, Chen YH, Stowell JAW, Alhusaini N, Sweet T, Graveley BR, et al. mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Mol Cell. 2018;70:1089–1100.e8.
pubmed: 29932902 pmcid: 6024076 doi: 10.1016/j.molcel.2018.05.033
Bazzini AA, Viso F, Moreno‐Mateos MA, Johnstone TG, Vejnar CE, Qin Y, et al. Codon identity regulates mRNA stability and translation efficiency during the maternal‐to‐zygotic transition. EMBO J. 2016;35:2087–103.
pubmed: 27436874 pmcid: 5048347 doi: 10.15252/embj.201694699
Mishima Y, Tomari Y. Codon usage and 3’ UTR length determine maternal mRNA stability in zebrafish. Mol Cell. 2016;61:874–85.
pubmed: 26990990 doi: 10.1016/j.molcel.2016.02.027
Hia F, Yang SF, Shichino Y, Yoshinaga M, Murakawa Y, Vandenbon A. et al. Codon bias confers stability to human mRNAs. EMBO Rep. 2019;20:e48220
pubmed: 31482640 pmcid: 6831995 doi: 10.15252/embr.201948220
Wu Q, Medina SG, Kushawah G, Devore ML, Castellano LA, Hand JM. et al. Translation affects mRNA stability in a codon-dependent manner in human cells. Elife. 2019;8:e45396.
pubmed: 31012849 pmcid: 6529216 doi: 10.7554/eLife.45396
Forrest ME, Pinkard O, Martin S, Sweet TJ, Hanson G, Coller J. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS One. 2020;15:e0228730.
pubmed: 32053646 pmcid: 7018022 doi: 10.1371/journal.pone.0228730
Buschauer R, Matsuo Y, Sugiyama T, Chen YH, Alhusaini N, Sweet T. et al. The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science. 2020;368:eaay6912
pubmed: 32299921 doi: 10.1126/science.aay6912
Chen Y, Boland A, Kuzuoǧlu-Öztürk D, Bawankar P, Loh B, Chang C-Te, et al. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell. 2014;54:737–50.
pubmed: 24768540 doi: 10.1016/j.molcel.2014.03.034
Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA. 2014;20:1398–409.
pubmed: 25035296 pmcid: 4138323 doi: 10.1261/rna.045302.114
Courel M, Clément Y, Bossevain C, Foretek D, Cruchez OV, Yi Z, et al. Gc content shapes mRNA storage and decay in human cells. Elife. 2019;8:1–32.
doi: 10.7554/eLife.49708
Wu Q, Medina SG, Kushawah G, Devore ML, Castellano LA, Hand JM. et al. Translation affects mRNA stability in a codon-dependent manner in human cells. Elife. 2019;8:e45396.
pubmed: 31012849 pmcid: 6529216 doi: 10.7554/eLife.45396
Burrow DA, Martin S, Quail JF, Alhusaini N, Coller J, Cleary MD. Attenuated codon optimality contributes to neural-specific mRNA decay in drosophila. Cell Rep. 2018;24:1704–12.
pmcid: 6169788 doi: 10.1016/j.celrep.2018.07.039
Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12:32–42.
pubmed: 21102527 doi: 10.1038/nrg2899
Gao NL, He Z, Zhu Q, Jiang P, Hu S, Chen W-H. Selection for cheaper amino acids drives nucleotide usage at the start of translation in eukaryotic genes. Genomics Proteomics Bioinformatics. 2021;S1672-0229:00060–7.
Tesina P, Lessen LN, Buschauer R, Cheng J, Wu CC, Berninghausen O, et al. Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts. EMBO J. 2020;39:e103365.
pubmed: 31858614 doi: 10.15252/embj.2019103365
Wan Makhtar WR, Browne G, Karountzos A, Stevens C, Alghamdi Y, Bottrill AR, et al. Short stretches of rare codons regulate translation of the transcription factor ZEB2 in cancer cells. Oncogene. 2017;36:6640–8.
pubmed: 28783176 pmcid: 5681250 doi: 10.1038/onc.2017.273
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell. 2016;61:341–51.
pubmed: 26849192 pmcid: 4745992 doi: 10.1016/j.molcel.2016.01.008
Perach M, Zafrir Z, Tuller T, Lewinson O Identification of conserved slow codons that are important for protein expression and function. RNA Biol. 2021;15476286.2021.1901185.
Walsh IM, Bowman MA, Soto Santarriaga IF, Rodriguez A, Clark PL. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci USA. 2020;117(Feb):3528–34.
pubmed: 32015130 pmcid: 7035613 doi: 10.1073/pnas.1907126117
Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell. 2015;59:744–54.
pubmed: 26321254 pmcid: 4561030 doi: 10.1016/j.molcel.2015.07.018
Liu Y.A code within the genetic code: Codon usage regulates co-translational protein folding.Cell Commun Signal. 2020;18:145
pubmed: 32907610 pmcid: 7488015 doi: 10.1186/s12964-020-00642-6
Zhao F, Yu CH, Liu Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res. 2017;45:8484–92.
pubmed: 28582582 pmcid: 5737824 doi: 10.1093/nar/gkx501
Medina-Muñoz SG, Kushawah G, Castellano LA, Diez M, DeVore ML, Salazar MJB, et al. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol. 2021;22:14.
pubmed: 33402205 pmcid: 7783504 doi: 10.1186/s13059-020-02251-5
Gorochowski TE, Ignatova Z, Bovenberg RAL, Roubos JA. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res. 2015;43:3022–32.
pubmed: 25765653 pmcid: 4381083 doi: 10.1093/nar/gkv199
Mauger DM, Joseph Cabral B, Presnyak V, Su SV, Reid DW, Goodman B, et al. mRNA structure regulates protein expression through changes in functional half-life. Proc Natl Acad Sci USA. 2019;116:24075–83.
pubmed: 31712433 pmcid: 6883848 doi: 10.1073/pnas.1908052116
Zhoua Z, Danga Y, Zhou M, Li L, Yu CH, Fu J, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci USA. 2016;113:E6117–25.
Zhao F, Zhou Z, Dang Y, Na H, Adam C, Lipzen A, et al. Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci. 2021;118:e2022590118.
pubmed: 33526697 pmcid: 8017958 doi: 10.1073/pnas.2022590118
Pinkard O, McFarland S, Sweet T, Coller J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat Commun. 2020;11:1–15.
doi: 10.1038/s41467-020-17879-x
Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci USA. 2004;101:12588–91.
pubmed: 15314228 pmcid: 515101 doi: 10.1073/pnas.0404957101
Waldman YY, Tuller T, Shlomi T, Sharan R, Ruppin E. Translation efficiency in humans: Tissue specificity, global optimization and differences between developmental stages. Nucleic Acids Res. 2010;38:2964–74.
pubmed: 20097653 pmcid: 2875035 doi: 10.1093/nar/gkq009
Parmley JL, Huynen MA. Clustering of codons with rare cognate tRNAs in human genes suggests an extra level of expression regulation. PLoS Genet. 2009;5:e1000548.
pubmed: 19578405 pmcid: 2697378 doi: 10.1371/journal.pgen.1000548
Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 2013;494:111–5.
doi: 10.1038/nature11833
Frenkel-Morgenstern M, Danon T, Christian T, Igarashi T, Cohen L, Hou YM. et al. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels. Mol Syst Biol. 2012;8:572.
pubmed: 22373820 pmcid: 3293633 doi: 10.1038/msb.2012.3
Aharon-Hefetz N, Frumkin I, Mayshar Y, Dahan O, Pilpel Y, Rak R. Manipulation of the human trna pool reveals distinct trna sets that act in cellular proliferation or cell cycle arrest. Elife 2020;9:1–28.
doi: 10.7554/eLife.58461
White RJ. RNA polymerase III transcription and cancer. Oncogene. 2004;23:3208–16.
pubmed: 15094770 doi: 10.1038/sj.onc.1207547
Mahlab S, Tuller T, Linial M. Conservation of the relative tRNA composition in healthy and cancerous tissues. RNA. 2012;18:640–52.
pubmed: 22357911 pmcid: 3312552 doi: 10.1261/rna.030775.111
Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase III transcription by c-Myc. Nature. 2003;421:290–4.
pubmed: 12529648 doi: 10.1038/nature01327
Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci. 2010;107:11823–8.
pubmed: 20543138 pmcid: 2900655 doi: 10.1073/pnas.1005188107
Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 2009;37:7268–80.
pubmed: 19783824 pmcid: 2790902 doi: 10.1093/nar/gkp787
Rudolph KLM, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, et al. Codon-driven translational efficiency is stable across diverse mammalian cell states. PLoS Genet. 2016;12:e1006024.
pubmed: 27166679 pmcid: 4864286 doi: 10.1371/journal.pgen.1006024
Rapino F, Delaunay S, Zhou Z, Chariot A, Close P. tRNA modification: is cancer having a wobble? Trends Cancer. 2017;3:249–252.
pubmed: 28718436 doi: 10.1016/j.trecan.2017.02.004
Dong C, Niu L, Song W, Xiong X, Zhang X, Zhang Z, et al. tRNA modification profiles of the fast-proliferating cancer cells. Biochem Biophys Res Commun. 2016;476:340–5.
pubmed: 27246735 doi: 10.1016/j.bbrc.2016.05.124
Bornelöv S, Selmi T, Flad S, Dietmann S, Frye M. Codon usage optimization in pluripotent embryonic stem cells. Genome Biol. 2019;20:119.
pubmed: 31174582 pmcid: 6555954 doi: 10.1186/s13059-019-1726-z
Yi J, Gao R, Chen Y, Yang Z, Han P, Zhang H, Dou Y, Liu W, Wang W, Du G, Xu Y, Wang J. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget 2017;8:20751–65.
pubmed: 27447970 doi: 10.18632/oncotarget.10612
Lu L, Zhu G, Zeng H, Xu Q, Holzmann K. High tRNA transferase NSUN2 gene expression is associated with poor prognosis in head and neck squamous carcinoma. Cancer Invest. 2018;36:246–53.
pubmed: 29775108 doi: 10.1080/07357907.2018.1466896
He Q, Yang L, Gao K, Ding P, Chen Q, Xiong J, et al. FTSJ1 regulates tRNA 2ʹ-O-methyladenosine modification and suppresses the malignancy of NSCLC via inhibiting DRAM1 expression. Cell Death Dis. 2020;111–12. 2020 115
Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol Med. 2013;5:366–83.
pubmed: 23381944 pmcid: 3598078 doi: 10.1002/emmm.201201161
Delaunay S, Rapino F, Tharun L, Zhou Z, Heukamp L, Termathe M, et al. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J Exp Med. 2016;213:2503–23.
pubmed: 27811057 pmcid: 5068235 doi: 10.1084/jem.20160397
Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, De Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605–9.
pubmed: 29925953 doi: 10.1038/s41586-018-0243-7
Ladang A, Rapino F, Heukamp LC, Tharun L, Shostak K, Hermand D, et al. Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine. J Exp Med. 2015;212:2057–75.
pubmed: 26527802 pmcid: 4647259 doi: 10.1084/jem.20142288
Xu S, Zhan M, Jiang C, He M, Yang L, Shen H, et al. Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun. 2019;10:1–14. 2019 101
doi: 10.1038/s41467-019-13420-x
Lorent J, Kusnadi EP, Hoef V, van, Rebello RJ, Leibovitch M, Ristau J, et al. Translational offsetting as a mode of estrogen receptor α-dependent regulation of gene expression. EMBO J. 2019;38:e101323.
pubmed: 31556460 pmcid: 6885737 doi: 10.15252/embj.2018101323
Clarke CJ, Berg TJ, Birch J, Ennis D, Mitchell L, Cloix C, et al. The initiator methionine trna drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr Biol. 2016;26:755–65.
pubmed: 26948875 pmcid: 4819511 doi: 10.1016/j.cub.2016.01.045
Zou Q, Xiao Z, Huang R, Wang X, Wang X, Zhao H. et al. Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics. 2019;9:4141–4155.
pubmed: 31281537 pmcid: 6592166 doi: 10.7150/thno.35033
Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol. 2005;7:311–8.
pubmed: 15723054 doi: 10.1038/ncb1224
Boon K, Caron HN, Van Asperen R, Valentijn L, Hermus MC, Van Sluis P, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 2001;20:1383–93.
pubmed: 11250904 pmcid: 145518 doi: 10.1093/emboj/20.6.1383
Schmidt EV. The role of c-myc in regulation of translation initiation. Oncogene. 2004;23:3217–21.
pubmed: 15094771 doi: 10.1038/sj.onc.1207548
Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ, et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 2003 ;22:2810–20.
pubmed: 12773395 pmcid: 156762 doi: 10.1093/emboj/cdg265
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. Biochim Biophys Acta. 2015;1849:898–907.
pubmed: 25497380 doi: 10.1016/j.bbagrm.2014.12.005
Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol. 2011;7:481–481.
pubmed: 21487400 pmcid: 3101949 doi: 10.1038/msb.2011.14
Sharma Y, Miladi M, Dukare S, Boulay K, Caudron-Herger M, Groß M, et al. A pan-cancer analysis of synonymous mutations. Nat Commun. 2019;10:1–14.
doi: 10.1038/s41467-019-10489-2
Bin Y, Wang X, Zhao L, Wen P, Xia J. An analysis of mutational signatures of synonymous mutations across 15 cancer types. BMC Med Genet. 2019;20:15–8.
doi: 10.1186/s12881-019-0926-4
Li Q, Li J, Yu Cpeng, Chang S, Xie Lling, Wang S. Synonymous mutations that regulate translation speed might play a non-negligible role in liver cancer development. BMC Cancer. 2021;21:1–13.
Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 2014;156:1324–35.
pubmed: 24630730 doi: 10.1016/j.cell.2014.01.051
Wu X, Li G. Prevalent accumulation of non-optimal codons through somatic mutations in human cancers. PLoS One. 2016;11:e0160463.
pubmed: 27513638 pmcid: 4981346 doi: 10.1371/journal.pone.0160463
Lampson BL, Pershing NLK, Prinz JA, Lacsina JR, Marzluff WF, Nicchitta CV, et al. Rare codons regulate KRas oncogenesis. Curr Biol. 2013;23:70–5.
pubmed: 23246410 doi: 10.1016/j.cub.2012.11.031
Fu J, Dang Y, Counter C, Liu Y. Codon usage regulates human KRAS expression at both transcriptional and translational levels. J Biol Chem. 2018;293:17929–40.
pubmed: 30275015 pmcid: 6240855 doi: 10.1074/jbc.RA118.004908
Benisty H, Weber M, Hernandez-Alias X, Schaefer MH, Serrano L. Mutation bias within oncogene families is related to proliferation-specific codon usage. Proc Natl Acad Sci USA. 2020;117:30848–56.
pubmed: 33199641 pmcid: 7720162 doi: 10.1073/pnas.2016119117
Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol. 2007;9:493–505.
pubmed: 17450133 doi: 10.1038/ncb1567
Pershing NLK, Lampson BL, Belsky JA, Kaltenbrun E, MacAlpine DM, Counter CM. Rare codons capacitate Kras-driven de novo tumorigenesis. J Clin Invest. 2015;125:222–33.
pubmed: 25437878 doi: 10.1172/JCI77627
Rapino F, Zhou Z, Roncero Sanchez AM, Joiret M, Seca C, El Hachem N. et al. Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate. Nat Commun. 2021;12:2170.
pubmed: 33859181 pmcid: 8050329 doi: 10.1038/s41467-021-22254-5
Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods. 2015;12:879–84. 2015 129
pubmed: 26237225 pmcid: 4553111 doi: 10.1038/nmeth.3508
Xu H, Yao J, Wu DC, Lambowitz AM. Improved TGIRT-seq methods for comprehensive transcriptome profiling with decreased adapter dimer formation and bias correction. Sci Rep. 2019;9:1–17.
Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol Cell. 2021;81:1802–1815.e7.
pubmed: 33581077 pmcid: 8062790 doi: 10.1016/j.molcel.2021.01.028
Evans ME, Clark WC, Zheng G, Pan T. Determination of tRNA aminoacylation levels by high-throughput sequencing. Nucleic Acids Res. 2017;45:e133.
pubmed: 28586482 pmcid: 5737633 doi: 10.1093/nar/gkx514
Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012 ;7:1534–50.
pubmed: 22836135 pmcid: 3535016 doi: 10.1038/nprot.2012.086
Schwanhäusser B, Gossen M, Dittmar G, Selbach M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics. 2009;9:205–9.
pubmed: 19053139 doi: 10.1002/pmic.200800275

Auteurs

Sarah L Gillen (SL)

Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK. slg76@cam.ac.uk.

Joseph A Waldron (JA)

Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.

Martin Bushell (M)

Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK. martin.bushell@glasgow.ac.uk.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH. martin.bushell@glasgow.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH