Dopaminergic Axons: Key Recitalists in Parkinson's Disease.
Axon degeneration
Ca2+
Mitochondrial dynamics
Parkinson's disease
Synaptic homeostasis
Journal
Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
31
05
2021
accepted:
05
10
2021
revised:
03
10
2021
pubmed:
13
10
2021
medline:
1
4
2022
entrez:
12
10
2021
Statut:
ppublish
Résumé
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca
Identifiants
pubmed: 34637100
doi: 10.1007/s11064-021-03464-1
pii: 10.1007/s11064-021-03464-1
doi:
Substances chimiques
Dopamine
VTD58H1Z2X
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
234-248Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76(1):33–50. https://doi.org/10.1016/j.neuron.2012.09.023
doi: 10.1016/j.neuron.2012.09.023
pubmed: 23040805
pmcid: 4386589
Ayano G (2016) Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat 2(2):120. https://doi.org/10.4172/2471-271x.1000120
doi: 10.4172/2471-271x.1000120
Tagliaferro P, Burke RE (2016) Retrograde axonal degeneration in Parkinson disease. J Parkinsons Dis 6(1):1–15. https://doi.org/10.3233/jpd-150769
doi: 10.3233/jpd-150769
pubmed: 27003783
pmcid: 4927911
Zhang J, Culp ML, Craver JG, Darley-Usmar V (2018) Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson’s disease. J Neurochem 144:691–709. https://doi.org/10.1111/jnc.14308
doi: 10.1111/jnc.14308
pubmed: 29341130
pmcid: 5897151
McCormack A, Keating DJ, Chegeni N, Colella A, Wang JJ, Chataway T (2019) Abundance of synaptic vesicle-related proteins in alpha-synuclein-containing protein inclusions suggests a targeted formation mechanism. Neurotox Res 35(4):883–897. https://doi.org/10.1007/s12640-019-00014-0
doi: 10.1007/s12640-019-00014-0
pubmed: 30796693
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004
doi: 10.1016/j.pneurobio.2013.10.004
pubmed: 24211851
Malik BR, Maddison DC, Smith GA, Peters OM (2019) Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 12(1):100. https://doi.org/10.1186/s13041-019-0504-x
doi: 10.1186/s13041-019-0504-x
pubmed: 31783880
pmcid: 6884906
Surmeier DJ (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 285(19):3657–3668. https://doi.org/10.1111/febs.14607
doi: 10.1111/febs.14607
pubmed: 30028088
pmcid: 6546423
Voronkov DN, Salkov VN, Anufriev PL, Khudoerkov RM (2018) Lewy bodies in Parkinson’s disease: histological, immunohistochemical and interferometric examinations. Arkh Patol 80(4):9–13. https://doi.org/10.17116/patol20188049
doi: 10.17116/patol20188049
pubmed: 30059066
Prots I, Grosch J, Brazdis RM, Simmnacher K, Veber V, Havlicek S, Hannappel C, Krach F, Krumbiegel M, Schütz O, Reis A, Wrasidlo W, Galasko DR, Groemer TW, Masliah E, Schlötzer-Schrehardt U, Xiang W, Winkler J, Winner B (2018) α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc Natl Acad Sci U S A 115(30):7813–7818. https://doi.org/10.1073/pnas.1713129115
doi: 10.1073/pnas.1713129115
pubmed: 29991596
pmcid: 6065020
Bolam JP, Pissadaki EK (2012) Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 27(12):1478–1483. https://doi.org/10.1002/mds.25135
doi: 10.1002/mds.25135
pubmed: 23008164
pmcid: 3504389
Pacelli C, Giguère N, Bourque MJ, Lévesque M, Slack RS, Trudeau LÉ (2015) Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol 25(18):2349–2360. https://doi.org/10.1016/j.cub.2015.07.050
doi: 10.1016/j.cub.2015.07.050
pubmed: 26320949
Franco-Iborra S, Perier C (2015) Neurodegeneration: the size takes it all. Curr Biol 25(18):R797–R800. https://doi.org/10.1016/j.cub.2015.07.062
doi: 10.1016/j.cub.2015.07.062
pubmed: 26394101
Mamelak M (2018) Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurol Ther 7(1):5–11. https://doi.org/10.1007/s40120-018-0091-2
doi: 10.1007/s40120-018-0091-2
pubmed: 29368093
pmcid: 5990513
Valdinocci D, Simões RF, Kovarova J, Cunha-Oliveira T, Neuzil J, Pountney DL (2019) Intracellular and intercellular mitochondrial dynamics in Parkinson’s disease. Front Neurosci 13:930. https://doi.org/10.3389/fnins.2019.00930
doi: 10.3389/fnins.2019.00930
pubmed: 31619944
pmcid: 6760022
Guo W, Stoklund Dittlau K, Van Den Bosch L (2020) Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 99:133–150. https://doi.org/10.1016/j.semcdb.2019.07.010
doi: 10.1016/j.semcdb.2019.07.010
pubmed: 31542222
Scorziello A, Borzacchiello D, Sisalli MJ, Di Martino R, Morelli M, Feliciello A (2020) Mitochondrial homeostasis and signaling in Parkinson’s disease. Front Aging Neurosci 12:100. https://doi.org/10.3389/fnagi.2020.00100
doi: 10.3389/fnagi.2020.00100
pubmed: 32372945
pmcid: 7186467
Vos M, Lauwers E, Verstreken P (2010) Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2:139. https://doi.org/10.3389/fnsyn.2010.00139
doi: 10.3389/fnsyn.2010.00139
pubmed: 21423525
pmcid: 3059669
Ludtmann MHR, Abramov AY (2018) Mitochondrial calcium imbalance in Parkinson’s disease. Neurosci Lett 663:86–90. https://doi.org/10.1016/j.neulet.2017.08.044
doi: 10.1016/j.neulet.2017.08.044
pubmed: 28838811
Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD, Morris CM (2018) Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinsons Dis 4(1):1–10. https://doi.org/10.1038/s41531-018-0044-6
doi: 10.1038/s41531-018-0044-6
Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurst W, Scorrano L, De Strooper B (2009) Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 1(2):99–111. https://doi.org/10.1002/emmm.200900006
doi: 10.1002/emmm.200900006
pubmed: 20049710
pmcid: 3378121
Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O (1832) Singh MP (2013) Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and Maneb and Paraquat mice models of Parkinson’s disease. Biochim Biophys Acta 8:1227–1240. https://doi.org/10.1016/j.bbadis.2013.03.019
doi: 10.1016/j.bbadis.2013.03.019
Chen Y, Sheng ZH (2013) Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 202(2):351–364. https://doi.org/10.1083/jcb.201302040
doi: 10.1083/jcb.201302040
pubmed: 23857772
pmcid: 3718985
Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology (Basel) 8(2):38. https://doi.org/10.3390/biology8020038
doi: 10.3390/biology8020038
Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh MP (2015) Cyclosporine A and MnTMPyP alleviate α-synuclein expression and aggregation in cypermethrin-induced Parkinsonism. Mol Neurobiol 52(3):1619–1628. https://doi.org/10.1007/s12035-014-8954-8
doi: 10.1007/s12035-014-8954-8
pubmed: 25370934
ur Rasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP, (2016) Resveratrol protects from toxin-induced parkinsonism: plethora of proofs hitherto petty translational value. Mol Neurobiol 53(5):2751–2760. https://doi.org/10.1007/s12035-015-9124-3
doi: 10.1007/s12035-015-9124-3
Podlesniy P, Puigròs M, Serra N, Fernández-Santiago R, Ezquerra M, Tolosa E, Trullas R (2019) Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson’s disease. EBioMedicine 48:554–567. https://doi.org/10.1016/j.ebiom.2019.09.015
doi: 10.1016/j.ebiom.2019.09.015
pubmed: 31631040
pmcid: 6838390
Dossi G, Squarcina L, Rango M (2019) In vivo mitochondrial function in idiopathic and genetic Parkinson’s disease. Metabolites 10(1):19. https://doi.org/10.3390/metabo10010019
doi: 10.3390/metabo10010019
pmcid: 7023121
Bury AG, Pyle A, Elson JL, Greaves L, Morris CM, Hudson G, Pienaar IS (2017) Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann Neurol 82(6):1016–1021. https://doi.org/10.1002/ana.25099
doi: 10.1002/ana.25099
pubmed: 29149768
Flønes IH, Fernandez-Vizarra E, Lykouri M, Brakedal B, Skeie GO, Miletic H, Lilleng PK, Alves G, Tysnes OB, Haugarvoll K, Dölle C, Zeviani M, Tzoulis C (2018) Neuronal complex I deficiency occurs throughout the Parkinson’s disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathol (Berl) 135(3):409–425. https://doi.org/10.1007/s00401-017-1794-7
doi: 10.1007/s00401-017-1794-7
Dixit A, Mehta R, Singh AK (2019) Proteomics in human Parkinson’s disease: present scenario and future directions. Cell Mol Neurobiol 39(7):901–915. https://doi.org/10.1007/s10571-019-00700-9
doi: 10.1007/s10571-019-00700-9
pubmed: 31190159
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129(6):898–915. https://doi.org/10.1111/jnc.12686
doi: 10.1111/jnc.12686
pubmed: 24548101
Plotegher N, Berti G, Ferrari E, Tessari I, Zanetti M, Lunelli L, Greggio E, Bisaglia M, Veronesi M, Girotto S, Dalla Serra M, Perego C, Casella L, Bubacco L (2017) DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci Rep 7:40699. https://doi.org/10.1038/srep40699
doi: 10.1038/srep40699
pubmed: 28084443
pmcid: 5233976
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39(1):31–59. https://doi.org/10.1007/s10571-018-0632-3
doi: 10.1007/s10571-018-0632-3
pubmed: 30446950
Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16(2):436–447. https://doi.org/10.1523/jneurosci.16-02-00436.1996
doi: 10.1523/jneurosci.16-02-00436.1996
pubmed: 8551328
pmcid: 6578661
Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388(2):211–227. https://doi.org/10.1002/(sici)1096-9861(19971117)388:2%3c211::aid-cne3%3e3.0.co;2-4
doi: 10.1002/(sici)1096-9861(19971117)388:2<211::aid-cne3>3.0.co;2-4
pubmed: 9368838
Segura-Aguilar J, Paris I (2014) Mechanisms of dopamine oxidation and parkinson's disease. In: Handbook of neurotoxicity, vol 2, pp 865–883. Springer, New York. https://doi.org/10.1007/978-1-4614-5836-4_16
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 67(4):1005–1024. https://doi.org/10.1124/pr.114.010397
doi: 10.1124/pr.114.010397
pubmed: 26408528
pmcid: 4630566
Castagnoli N, Petzer JP, Steyn S, Castagnoli K, Chen JF, Schwarzschild MA, Van Der Schyf CJ (2003) Monoamine oxidase B inhibition and neuroprotection: studies on selective adenosine A2A receptor antagonists. Neurology 61(11 SUPPL. 6):S62-68. https://doi.org/10.1212/01.wnl.0000095215.97585.59
doi: 10.1212/01.wnl.0000095215.97585.59
pubmed: 14663013
Segura-Aguilar J (2017) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regen Res 12(6):897–901. https://doi.org/10.4103/1673-5374.208560
doi: 10.4103/1673-5374.208560
pubmed: 28761417
pmcid: 5514859
Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33(2):404–415. https://doi.org/10.1016/j.neurobiolaging.2010.02.018
doi: 10.1016/j.neurobiolaging.2010.02.018
pubmed: 20371137
Toulorge D, Schapira AHV, Hajj R (2016) Molecular changes in the postmortem parkinsonian brain. J Neurochem 139:27–58. https://doi.org/10.1111/jnc.13696
doi: 10.1111/jnc.13696
pubmed: 27381749
Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357(6357):1255–1261. https://doi.org/10.1126/science.aam9080
doi: 10.1126/science.aam9080
pubmed: 28882997
pmcid: 6021018
Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV α-synucleinopathy. J Neurosci 29(11):3365–3373. https://doi.org/10.1523/jneurosci.5427-08.2009
doi: 10.1523/jneurosci.5427-08.2009
pubmed: 19295143
pmcid: 2693917
Pellegrini L, Wetzel A, Grannó S, Heaton G, Harvey K (2017) Back to the tubule: microtubule dynamics in Parkinson’s disease. Cell Mol Life Sci 74(3):409–434. https://doi.org/10.1007/s00018-016-2351-6
doi: 10.1007/s00018-016-2351-6
pubmed: 27600680
Cartelli D, Cappelletti G (2017) Microtubule destabilization paves the way to Parkinson’s disease. Mol Neurobiol 54:6762–6774. https://doi.org/10.1007/s12035-016-0188-5
doi: 10.1007/s12035-016-0188-5
pubmed: 27757833
Brady ST, Morfini GA (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 105:273–282. https://doi.org/10.1016/j.nbd.2017.04.010
doi: 10.1016/j.nbd.2017.04.010
pubmed: 28411118
pmcid: 5522763
Panchal K, Tiwari AK (2021) Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 56:118–135. https://doi.org/10.1016/j.mito.2020.10.005
doi: 10.1016/j.mito.2020.10.005
pubmed: 33127590
Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135(7):2058–2073. https://doi.org/10.1093/brain/aws133
doi: 10.1093/brain/aws133
pubmed: 22719003
pmcid: 4571141
Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136(8):2419–2431. https://doi.org/10.1093/brain/awt192
doi: 10.1093/brain/awt192
pubmed: 23884810
pmcid: 3722357
Morfini GA, Burns M, Binder LI, Kanaan NM, Lapointe N, Bosco DA, Brown RH, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. https://doi.org/10.1523/jneurosci.3463-09.2009
doi: 10.1523/jneurosci.3463-09.2009
pubmed: 19828789
pmcid: 2801051
Morfini G, Pigino G, Opalach K, Serulle Y, Moreira JE, Sugimori M, Llinás RR, Brady ST (2007) 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc Natl Acad Sci U S A 104(7):2442–2447. https://doi.org/10.1073/pnas.0611231104
doi: 10.1073/pnas.0611231104
pubmed: 17287338
pmcid: 1892945
Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Böhm KJ, Winner B (2013) α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–21754. https://doi.org/10.1074/jbc.M113.451815
doi: 10.1074/jbc.M113.451815
pubmed: 23744071
pmcid: 3724632
da Cruz M-J (2019) Hyper-serotonergic state determines onset and progression of idiopathic Parkinson’s disease. Med Hypotheses 133:109399. https://doi.org/10.1016/j.mehy.2019.109399
doi: 10.1016/j.mehy.2019.109399
Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681. https://doi.org/10.1242/jcs.171017
doi: 10.1242/jcs.171017
pubmed: 28154157
pmcid: 5339882
Whitworth AJ, Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo? Curr Opin Genet Dev 44:47–53. https://doi.org/10.1016/j.gde.2017.01.016
doi: 10.1016/j.gde.2017.01.016
pubmed: 28213158
Haddad D, Nakamura K (2015) Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett 589:3702–3713. https://doi.org/10.1016/j.febslet.2015.10.021
doi: 10.1016/j.febslet.2015.10.021
pubmed: 26526613
pmcid: 4679488
Podlesniy P, Vilas D, Taylor P, Shaw LM, Tolosa E, Trullas R (2016) Mitochondrial DNA in CSF distinguishes LRRK2 from idiopathic Parkinson’s disease. Neurobiol Dis 94:10–17. https://doi.org/10.1016/j.nbd.2016.05.019
doi: 10.1016/j.nbd.2016.05.019
pubmed: 27260835
Winklhofer KF (1802) Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1:29–44. https://doi.org/10.1016/j.bbadis.2009.08.013
doi: 10.1016/j.bbadis.2009.08.013
Lu X, Kim-Han JS, Harmon S, Sakiyama-Elbert SE, O’Malley KL (2014) The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener 9(1):17. https://doi.org/10.1186/1750-1326-9-17
doi: 10.1186/1750-1326-9-17
pubmed: 24885281
pmcid: 4016665
Pozo Devoto VM, Falzone TL (2017) Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein? Dis Model Mech 10(9):1075–1087. https://doi.org/10.1242/dmm.026294
doi: 10.1242/dmm.026294
pubmed: 28883016
pmcid: 5611962
Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011
doi: 10.1016/j.expneurol.2012.01.011
pubmed: 22285449
Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206(5):655–670. https://doi.org/10.1083/jcb.201401070
doi: 10.1083/jcb.201401070
pubmed: 25154397
pmcid: 4151150
Trancikova A, Tsika E, Moore DJ (2012) Mitochondrial dysfunction in genetic animal models of Parkinson’s disease. Antioxid Redox Signal 16(9):896–919. https://doi.org/10.1089/ars.2011.4200
doi: 10.1089/ars.2011.4200
pubmed: 21848447
pmcid: 3292748
Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18(5):21. https://doi.org/10.1007/s11910-018-0829-3
doi: 10.1007/s11910-018-0829-3
pubmed: 29616350
pmcid: 5882770
Amorim IS, Graham LC, Carter RN, Morton NM, Hammachi F, Kunath T, Pennetta G, Carpanini SM, Manson JC, Lamont DJ, Wishart TM, Gillingwater TH (2017) Sideroflexin 3 is an α-synuclein-dependent mitochondrial protein that regulates synaptic morphology. J Cell Sci 130(2):325–331. https://doi.org/10.1242/jcs.194241
doi: 10.1242/jcs.194241
pubmed: 28049716
pmcid: 5278670
Mallet N, Delgado L, Chazalon M, Miguelez C, Baufreton J (2019) Cellular and synaptic dysfunctions in Parkinson’s disease: stepping out of the striatum. Cells 8(9):1005. https://doi.org/10.3390/cells8091005
doi: 10.3390/cells8091005
pmcid: 6769933
Fazio P, Svenningsson P, Cselényi Z, Halldin C, Farde L, Varrone A (2018) Nigrostriatal dopamine transporter availability in early Parkinson’s disease. Mov Disord 33(4):592–599. https://doi.org/10.1002/mds.27316
doi: 10.1002/mds.27316
pubmed: 29436751
Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, Henry S, Pittman B, Ropchan J, Nabulsi N, Suridjan I, Comley RA, Huang Y, Finnema SJ, Carson RE (2020) Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann Neurol 87(3):329–338. https://doi.org/10.1002/ana.25682
doi: 10.1002/ana.25682
pubmed: 31953875
pmcid: 7065227
Pienaar IS, Burn D, Morris C, Dexter D (2012) Synaptic protein alterations in Parkinson’s disease. Mol Neurobiol 45(1):126–143. https://doi.org/10.1007/s12035-011-8226-9
doi: 10.1007/s12035-011-8226-9
pubmed: 22205299
Burré J (2015) The synaptic function of α-synuclein. J Parkinsons Dis 5:699–713. https://doi.org/10.3233/jpd-150642
doi: 10.3233/jpd-150642
pubmed: 26407041
pmcid: 4927875
Soukup SF, Vanhauwaert R, Verstreken P (2018) Parkinson’s disease: convergence on synaptic homeostasis. EMBO J 37(18):e98960. https://doi.org/10.15252/embj.201898960
doi: 10.15252/embj.201898960
pubmed: 30065071
pmcid: 6138432
Pan PY, Zhu Y, Shen Y, Yue Z (2019) Crosstalk between presynaptic trafficking and autophagy in Parkinson’s disease. Neurobiol Dis 122(2017):64–71. https://doi.org/10.1016/j.nbd.2018.04.020
doi: 10.1016/j.nbd.2018.04.020
pubmed: 29723605
Shimojo M, Madara J, Pankow S, Liu X, Yates J, Südhof TC, Maximov A (2019) Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev 33(5–6):365–376. https://doi.org/10.1101/gad.320077.118
doi: 10.1101/gad.320077.118
pubmed: 30808661
pmcid: 6411015
Bereczki E, Bogstedt A, Höglund K, Tsitsi P, Brodin L, Ballard C, Svenningsson P, Aarsland D (2017) Synaptic proteins in CSF relate to Parkinson’s disease stage markers. NPJ Parkinsons Dis 3(1):7. https://doi.org/10.1038/s41531-017-0008-2
doi: 10.1038/s41531-017-0008-2
pubmed: 28649607
pmcid: 5445607
Bridi JC, Hirth F (2018) Mechanisms of α-Synuclein induced synaptopathy in parkinson’s disease. Front Neurosci 12:80. https://doi.org/10.3389/fnins.2018.00080
doi: 10.3389/fnins.2018.00080
pubmed: 29515354
pmcid: 5825910
Phan JA, Stokholm K, Zareba-Paslawska J, Jakobsen S, Vang K, Gjedde A, Landau AM, Romero-Ramos M (2017) Early synaptic dysfunction induced by α-synuclein in a rat model of Parkinson’s disease. Sci Rep 7(1):6363. https://doi.org/10.1038/s41598-017-06724-9
doi: 10.1038/s41598-017-06724-9
pubmed: 28743955
pmcid: 5526979
Visanji NP, Brooks PL, Hazrati LN, Lang AE (2014) The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun 1:2. https://doi.org/10.1186/2051-5960-1-2
doi: 10.1186/2051-5960-1-2
Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A (2017) The Contribution of α-synuclein spreading to Parkinson’s disease synaptopathy. Neural Plas 2017:5012129. https://doi.org/10.1155/2017/5012129
doi: 10.1155/2017/5012129
Ma J, Gao J, Wang J, Xie A (2019) Prion-like mechanisms in Parkinson’s disease. Front Neurosci 13:552. https://doi.org/10.3389/fnins.2019.00552
doi: 10.3389/fnins.2019.00552
pubmed: 31275093
pmcid: 6591488
Gorenberg EL, Chandra SS (2017) The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front Neurosci 11:248. https://doi.org/10.3389/fnins.2017.00248
doi: 10.3389/fnins.2017.00248
pubmed: 28579939
pmcid: 5437171
Catoni C, Calì T, Brini M (2019) Calcium, dopamine and neuronal calcium sensor 1: their contribution to Parkinson’s disease. Front Mol Neurosci 12:55. https://doi.org/10.3389/fnmol.2019.00055
doi: 10.3389/fnmol.2019.00055
pubmed: 30967759
pmcid: 6440390
Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E (2017) Calcium and Parkinson’s disease. Biochem Biophys Res Commun 483(4):1013–1019. https://doi.org/10.1016/j.bbrc.2016.08.168
doi: 10.1016/j.bbrc.2016.08.168
pubmed: 27590583
Benkert J, Hess S, Roy S, Beccano-Kelly D, Wiederspohn N, Duda J, Simons C, Patil K, Gaifullina A, Mannal N, Dragicevic E, Spaich D, Müller S, Nemeth J, Hollmann H, Deuter N, Mousba Y, Kubisch C, Poetschke C, Striessnig J, Pongs O, Schneider T, Wade-Martins R, Patel S, Parlato R, Frank T, Kloppenburg P, Liss B (2019) Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat Commun 10(1):5094. https://doi.org/10.1038/s41467-019-12834-x
doi: 10.1038/s41467-019-12834-x
pubmed: 31704946
pmcid: 6841684
Zaichick SV, McGrath KM, Caraveo G (2017) The role of Ca
doi: 10.1242/dmm.028738
pubmed: 28468938
pmcid: 5451174
Brimblecombe KR, Vietti-Michelina S, Platt NJ, Kastli R, Hnieno A, Gracie CJ, Cragg SJ (2019) Calbindin-D28K limits dopamine release in ventral but not dorsal striatum by regulating Ca
doi: 10.1021/acschemneuro.9b00325
pubmed: 31361457
Leandrou E, Emmanouilidou E, Vekrellis K (2019) Voltage-gated calcium channels and α-synuclein: implications in Parkinson’s disease. Front Mol Neurosci 12:237. https://doi.org/10.3389/fnmol.2019.00237
doi: 10.3389/fnmol.2019.00237
pubmed: 31649506
pmcid: 6794345
Verma A, Ravindranath V (2020) CaV1.3 L-type calcium channels increase the vulnerability of substantia nigra dopaminergic neurons in MPTP mouse model of Parkinson’s disease. Front Aging Neurosci 11:382. https://doi.org/10.3389/fnagi.2019.00382
doi: 10.3389/fnagi.2019.00382
pubmed: 32009942
pmcid: 6978652
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT (2011) The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 198:221–231. https://doi.org/10.1016/j.neuroscience.2011.08.045
doi: 10.1016/j.neuroscience.2011.08.045
pubmed: 21884755
Sgobio C, Sun L, Ding J, Herms J, Lovinger DM, Cai H (2019) Unbalanced calcium channel activity underlies selective vulnerability of nigrostriatal dopaminergic terminals in Parkinsonian mice. Sci Rep 9(1):4857. https://doi.org/10.1038/s41598-019-41091-7
doi: 10.1038/s41598-019-41091-7
pubmed: 30890737
pmcid: 6425036
Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of Ca V1 channels and calcium-binding proteins. Brain 136(7):2077–2097. https://doi.org/10.1093/brain/awt134
doi: 10.1093/brain/awt134
pubmed: 23771339
Betzer C, Jensen PH (2018) Reduced cytosolic calcium as an early decisive cellular state in Parkinson’s disease and synucleinopathies. Front Neurosci 12:819. https://doi.org/10.3389/fnins.2018.00819
doi: 10.3389/fnins.2018.00819
pubmed: 30459551
pmcid: 6232531
Angelova PR, Ludtmann MHR, Horrocks MH, Negoda A, Cremades N, Klenerman D, Dobson CM, Wood NW, Pavlov EV, Gandhi S, Abramov AY (2016) Ca
doi: 10.1242/jcs.180737
pubmed: 26989132
pmcid: 4893653
Verma M, Wills Z, Chu CT (2018) Excitatory dendritic mitochondrial calcium toxicity: implications for Parkinson’s and other neurodegenerative diseases. Front Neurosci 12:523. https://doi.org/10.3389/fnins.2018.00523
doi: 10.3389/fnins.2018.00523
pubmed: 30116173
pmcid: 6083050
Barazzuol L, Giamogante F, Brini M, Calì T (2020) PINK1/Parkin mediated mitophagy, Ca
doi: 10.3390/ijms21051772
pmcid: 7084677
Lim J, Yue Z (2015) Neuronal aggregates: formation, clearance, and spreading. Dev Cell 32(4):491–501. https://doi.org/10.1016/j.devcel.2015.02.002
doi: 10.1016/j.devcel.2015.02.002
pubmed: 25710535
pmcid: 4376477
Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69(4):628–649. https://doi.org/10.1016/j.neuron.2011.02.010
doi: 10.1016/j.neuron.2011.02.010
pubmed: 21338876
pmcid: 3065181
Siciliano CA, Calipari ES, Ferris MJ, Jones SR (2015) Adaptations of presynaptic dopamine terminals induced by psychostimulant self-administration. ACS Chem Neurosci 6(1):27–36. https://doi.org/10.1021/cn5002705
doi: 10.1021/cn5002705
pubmed: 25491345
Yorgason JT, Calipari ES, Ferris MJ, Karkhanis AN, Fordahl SC, Weiner JL, Jones SR (2016) Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology 101:471–479. https://doi.org/10.1016/j.neuropharm.2015.10.025
doi: 10.1016/j.neuropharm.2015.10.025
pubmed: 26525189
Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67(6):715–725. https://doi.org/10.1002/ana.21995
doi: 10.1002/ana.21995
pubmed: 20517933
pmcid: 2918373
Hasbani DM, O’Malley KL (2006) WldS mice are protected against the Parkinsonian mimetic MPTP. Exp Neurol 202(1):93–99. https://doi.org/10.1016/j.expneurol.2006.05.017
doi: 10.1016/j.expneurol.2006.05.017
pubmed: 16806180
Murdoch JD, Rostosky CM, Gowrisankaran S, Arora AS, Soukup SF, Vidal R, Capece V, Freytag S, Fischer A, Verstreken P, Bonn S, Raimundo N, Milosevic I (2016) Endophilin—a deficiency induces the Foxo3a-Fbxo32 network in the brain and causes dysregulation of autophagy and the ubiquitin-proteasome system. Cell Rep 17(4):1071–1086. https://doi.org/10.1016/j.celrep.2016.09.058
doi: 10.1016/j.celrep.2016.09.058
pubmed: 27720640
pmcid: 5080600
Jin EJ, Kiral FR, Ozel MN, Burchardt LS, Osterland M, Epstein D, Wolfenberg H, Prohaska S, Hiesinger PR (2018) Live observation of two parallel membrane degradation pathways at axon terminals. Curr Biol 28 (7):1027–1038e1024. https://doi.org/10.1016/j.cub.2018.02.032
Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500. https://doi.org/10.1146/annurev-cellbio-100818-125242
doi: 10.1146/annurev-cellbio-100818-125242
pubmed: 31340124
pmcid: 31340124
Olgiati S, Thomas A, Quadri M, Breedveld GJ, Graafland J, Eussen H, Douben H, de Klein A, Onofrj M, Bonifati V (2015) Early-onset Parkinsonism caused by alpha-synuclein gene triplication: clinical and genetic findings in a novel family. Parkinsonism Relat Disord 21(8):981–986. https://doi.org/10.1016/j.parkreldis.2015.06.005
doi: 10.1016/j.parkreldis.2015.06.005
pubmed: 26077166
Lee S, Imai Y, Gehrke S, Liu S, Lu B (2012) The synaptic function of LRRK2. Biochem Soc Trans 40(5):1047–1051. https://doi.org/10.1042/bst20120113
doi: 10.1042/bst20120113
pubmed: 22988863
Arranz AM, Delbroek L, van Kolen K, Guimarães MR, Mandemakers W, Daneels G, Matta S, Calafate S, Shaban H, Baatsen P, de Bock PJ, Gevaert K, Berghe PV, Verstreken P, de Strooper B, Moechars D (2015) LRRK2 functions in synaptic vesicle endocytosis through a kinase dependent mechanism. J Cell Sci 128(3):541–552. https://doi.org/10.1242/jcs.158196
doi: 10.1242/jcs.158196
pubmed: 25501810
Xiong Y, Dawson TM, Dawson VL (2017) Models of LRRK2-associated Parkinson’s disease. Adv Neurobiol 14:163–191. https://doi.org/10.1007/978-3-319-49969-7_9
doi: 10.1007/978-3-319-49969-7_9
pubmed: 28353284
pmcid: 5535810
Kuhlmann N, Milnerwood AJ (2020) A critical LRRK at the synapse? The neurobiological function and pathophysiological dysfunction of LRRK2. Front Mol Neurosci 13:153. https://doi.org/10.3389/fnmol.2020.00153
doi: 10.3389/fnmol.2020.00153
pubmed: 32973447
pmcid: 7482583
Cao M, Milosevic I, Giovedi S, De Camilli P (2014) Upregulation of Parkin in endophilin mutant mice. J Neurosci 34(49):16544–16549. https://doi.org/10.1523/jneurosci.1710-14.2014
doi: 10.1523/jneurosci.1710-14.2014
pubmed: 25471590
pmcid: 4252559
Sassone J, Serratto GM, Valtorta F, Silani V, Passafaro M, Ciammola A (2017) The synaptic function of Parkin. Brain 140(9):2265–2272. https://doi.org/10.1093/brain/awx006
doi: 10.1093/brain/awx006
pubmed: 28335015
Lee W, Koh S, Hwang S, Kim SH (2018) Presynaptic dysfunction by familial factors in Parkinson disease. Int Neurourol J 22:S115–S121. https://doi.org/10.5213/inj.1836216.108
doi: 10.5213/inj.1836216.108
pubmed: 30396260
pmcid: 6234725
Williams ET, Chen X, Moore DJ (2017) VPS35, the retromer complex and Parkinson’s disease. J Parkinsons Dis 7(2):219–233. https://doi.org/10.3233/jpd-161020
doi: 10.3233/jpd-161020
pubmed: 28222538
pmcid: 5438477
Rahman AA, Morrison BE (2019) Contributions of VPS35 mutations to Parkinson’s disease. Neuroscience 401:1–10. https://doi.org/10.1016/j.neuroscience.2019.01.006
doi: 10.1016/j.neuroscience.2019.01.006
pubmed: 30660673
Eleuteri S, Albanese A (2019) VPS35-based approach: a potential innovative treatment in Parkinson’s disease. Front Neurol 10:1272. https://doi.org/10.3389/fneur.2019.01272
doi: 10.3389/fneur.2019.01272
pubmed: 31920908
pmcid: 6928206
Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F (2017) Rabphilin 3A: a novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 108:54–64. https://doi.org/10.1016/j.nbd.2017.08.001
doi: 10.1016/j.nbd.2017.08.001
pubmed: 28823933
Shi MM, Shi CH, Xu YM (2017) Rab GTPases: the key players in the molecular pathway of Parkinson’s disease. Front Cell Neurosci 11:81. https://doi.org/10.3389/fncel.2017.00081
doi: 10.3389/fncel.2017.00081
pubmed: 28400718
pmcid: 5369176
Lunati A, Lesage S, Brice A (2018) The genetic landscape of Parkinson’s disease. Rev Neurol (Paris) 174(9):628–643. https://doi.org/10.1016/j.neurol.2018.08.004
doi: 10.1016/j.neurol.2018.08.004
Singh PK, Muqit MMK (2020) Parkinson’s: a disease of aberrant vesicle trafficking. Annu Rev Cell Dev Biol 36:237–264. https://doi.org/10.1146/annurev-cellbio-100818-125512
doi: 10.1146/annurev-cellbio-100818-125512
pubmed: 32749865
Song L, He Y, Ou J, Zhao Y, Li R, Cheng J, Lin CH, Ho MS (2017) Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Cell Rep 18(5):1132–1143. https://doi.org/10.1016/j.celrep.2017.01.005
doi: 10.1016/j.celrep.2017.01.005
pubmed: 28147270
Nguyen M, Krainc D (2018) LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson’s disease. Proc Natl Acad Sci U S A 115(21):5576–5581. https://doi.org/10.1073/pnas.1717590115
doi: 10.1073/pnas.1717590115
pubmed: 29735704
pmcid: 6003526
Roosen DA, Landeck N, Conti M, Smith N, Saez-Atienzar S, Ding J, Beilina A, Kumaran R, Kaganovich A, Du Hoffmann J (2019) Mutations in Auxilin cause parkinsonism via impaired clathrin-mediated trafficking at the Golgi apparatus and synapse. BioRxiv. https://doi.org/10.1101/830802
doi: 10.1101/830802
Fasano D, Parisi S, Pierantoni GM, De Rosa A, Picillo M, Amodio G, Pellecchia MT, Barone P, Moltedo O, Bonifati V, De Michele G, Nitsch L, Remondelli P, Criscuolo C, Paladino S (2018) Alteration of endosomal trafficking is associated with early-onset parkinsonism caused by SYNJ1 mutations. Cell Death Dis 9(3):1–15. https://doi.org/10.1038/s41419-018-0410-7
doi: 10.1038/s41419-018-0410-7
Cao M, Park D, Wu Y, De Camilli P (2020) Absence of Sac2/INPP5F enhances the phenotype of a Parkinson’s disease mutation of synaptojanin 1. Proc Natl Acad Sci U S A 117(22):12428–12434. https://doi.org/10.1073/pnas.2004335117
doi: 10.1073/pnas.2004335117
pubmed: 32424101
pmcid: 7275725
Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D (2019) Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci 42(2):140–149. https://doi.org/10.1016/j.tins.2018.11.001
doi: 10.1016/j.tins.2018.11.001
pubmed: 30509690
Vidyadhara DJ, Lee JE, Chandra SS (2019) Role of the endolysosomal system in Parkinson’s disease. J Neurochem 150(5):487–506. https://doi.org/10.1111/jnc.14820
doi: 10.1111/jnc.14820
pubmed: 31287913
pmcid: 6707858
Agliardi C, Guerini FR, Zanzottera M, Riboldazzi G, Zangaglia R, Sturchio A, Casali C, Di Lorenzo C, Minafra B, Nemni R, Clerici M (2019) SNAP25 gene polymorphisms protect against Parkinson’s disease and modulate disease severity in patients. Mol Neurobiol 56(6):4455–4463. https://doi.org/10.1007/s12035-018-1386-0
doi: 10.1007/s12035-018-1386-0
pubmed: 30334187
Longhena F, Faustini G, Varanita T, Zaltieri M, Porrini V, Tessari I, Poliani PL, Missale C, Borroni B, Padovani A, Bubacco L, Pizzi M, Spano PF, Bellucci A (2018) Synapsin III is a key component of α-synuclein fibrils in Lewy bodies of PD brains. Brain Pathol 28(6):875–888. https://doi.org/10.1111/bpa.12587
doi: 10.1111/bpa.12587
pubmed: 29330884
pmcid: 8028549
Atias M, Tevet Y, Sun J, Stavsky A, Tal S, Kahn J, Roy S, Gitler D (2019) Synapsins regulate α-synuclein functions. Proc Natl Acad Sci U S A 166(23):11116–11118. https://doi.org/10.1073/pnas.1903054116
doi: 10.1073/pnas.1903054116
Cao M, Wu Y, Ashrafi G, McCartney AJ, Wheeler H, Bushong EA, Boassa D, Ellisman MH, Ryan TA, De Camilli P (2017) Parkinson sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron 93(4):882–896. https://doi.org/10.1016/j.neuron.2017.01.019
doi: 10.1016/j.neuron.2017.01.019
pubmed: 28231468
pmcid: 5340420
Bento CF, Ashkenazi A, Jimenez-Sanchez M, Rubinsztein DC (2016) The Parkinson’s disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun 7(1):1–16. https://doi.org/10.1038/ncomms11803
doi: 10.1038/ncomms11803
Wang C, Kang X, Zhou L, Chai Z, Wu Q, Huang R, Xu H, Hu M, Sun X, Sun S, Li J, Jiao R, Zuo P, Zheng L, Yue Z, Zhou Z (2018) Synaptotagmin-11 is a critical mediator of Parkin-linked neurotoxicity and Parkinson’s disease-like pathology. Nat Commun 9(1):1–14. https://doi.org/10.1038/s41467-017-02593-y
doi: 10.1038/s41467-017-02593-y
Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, Ghetti B, Della Corte L, Spano P, Tofaris GK, Goedert M, Spillantini MG (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133(7):2032–2044. https://doi.org/10.1093/brain/awq132
doi: 10.1093/brain/awq132
pubmed: 20534649
pmcid: 2892942
Ageta-Ishihara N, Yamakado H, Morita T, Hattori S, Takao K, Miyakawa T, Takahashi R, Kinoshita M (2013) Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson’s disease, causes behavioral alterations but not neurodegeneration in mice. Mol Brain 6:35. https://doi.org/10.1186/1756-6606-6-35
doi: 10.1186/1756-6606-6-35
pubmed: 23938054
pmcid: 3751304
Sala G, Stefanoni G, Arosio A, Riva C, Melchionda L, Saracchi E, Fermi S, Brighina L, Ferrarese C (2014) Reduced expression of the chaperone-mediated autophagy carrier hsc70 protein in lymphomonocytes of patients with Parkinson’s disease. Brain Res 1546:46–52. https://doi.org/10.1016/j.brainres.2013.12.017
doi: 10.1016/j.brainres.2013.12.017
pubmed: 24361989
Sala G, Marinig D, Arosio A, Ferrarese C (2016) Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson’s disease. Front Mol Neurosci 9:157. https://doi.org/10.3389/fnmol.2016.00157
doi: 10.3389/fnmol.2016.00157
pubmed: 28066181
pmcid: 5179559