Proteomic Study of Low-Birth-Weight Nephropathy in Rats.
Animals
Animals, Newborn
/ metabolism
Biomarkers
/ metabolism
Birth Weight
/ physiology
Electron Transport Complex III
/ metabolism
Female
Infant, Low Birth Weight
/ metabolism
Kidney
/ metabolism
Kidney Diseases
/ metabolism
Male
NF-E2-Related Factor 2
/ metabolism
Oxidative Phosphorylation
Pregnancy
Proteome
/ metabolism
Proteomics
/ methods
Rapamycin-Insensitive Companion of mTOR Protein
/ metabolism
Rats
kidney
low birth weight
mitochondria
nephropathy
proteomics
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
24 Sep 2021
24 Sep 2021
Historique:
received:
22
08
2021
revised:
13
09
2021
accepted:
16
09
2021
entrez:
13
10
2021
pubmed:
14
10
2021
medline:
3
11
2021
Statut:
epublish
Résumé
The hyperfiltration theory has been used to explain the mechanism of low birth weight (LBW)-related nephropathy. However, the molecular changes in the kidney proteome have not been defined in this disease, and early biomarkers are lacking. We investigated the molecular pathogenesis of LBW rats obtained by intraperitoneal injection of dexamethasone into pregnant animals. Normal-birth-weight (NBW) rats were used as controls. When the rats were four weeks old, the left kidneys were removed and used for comprehensive label-free proteomic studies. Following uninephrectomy, all rats were fed a high-salt diet until 9 weeks of age. Differences in the molecular composition of the kidney cortex were observed at the early step of LBW nephropathy pathogenesis. Untargeted quantitative proteomics showed that proteins involved in energy metabolism, such as oxidative phosphorylation (OXPHOS), the TCA cycle, and glycolysis, were specifically downregulated in the kidneys of LBW rats at four weeks. No pathological changes were detected at this early stage. Pathway analysis identified NEFL2 (NRF2) and RICTOR as potential upstream regulators. The search for biomarkers identified components of the mitochondrial respiratory chain, namely, ubiquinol-cytochrome c reductase complex subunits (UQCR7/11) and ATP5I/L, two components of mitochondrial F
Identifiants
pubmed: 34638634
pii: ijms221910294
doi: 10.3390/ijms221910294
pmc: PMC8508940
pii:
doi:
Substances chimiques
Biomarkers
0
NF-E2-Related Factor 2
0
Proteome
0
Rapamycin-Insensitive Companion of mTOR Protein
0
Electron Transport Complex III
EC 7.1.1.8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
J Nephrol. 2014 Jun;27(3):221-8
pubmed: 24567069
Int J Mol Sci. 2021 Jul 13;22(14):
pubmed: 34299112
Diagn Pathol. 2014 Sep 30;9:181
pubmed: 25350944
N Engl J Med. 2013 Dec 26;369(26):2492-503
pubmed: 24206459
Pediatr Res. 1998 Sep;44(3):317-22
pubmed: 9727707
Am J Kidney Dis. 2018 Jun;71(6):909-910
pubmed: 29609975
J Clin Invest. 2021 Jan 4;131(1):
pubmed: 33393495
FASEB J. 2017 Jan;31(1):294-307
pubmed: 27825100
Clin J Am Soc Nephrol. 2009 Jan;4(1):10-3
pubmed: 19129313
Clin J Am Soc Nephrol. 2017 Apr 3;12(4):585-590
pubmed: 28336816
Aging (Albany NY). 2011 May;3(5):464-78
pubmed: 21566257
Cardiovasc Res. 2014 Sep 1;103(4):461-72
pubmed: 24947415
Front Pediatr. 2017 Jun 29;5:151
pubmed: 28706894
J Am Soc Nephrol. 2005 Oct;16(10):2913-9
pubmed: 16093454
J Am Soc Nephrol. 2011 Mar;22(3):431-6
pubmed: 21355058
J Clin Invest. 2011 Jun;121(6):2197-209
pubmed: 21606591
PLoS One. 2016 Apr 19;11(4):e0153819
pubmed: 27092556
Kidney Int. 2001 Jan;59(1):238-45
pubmed: 11135076
Toxicol Appl Pharmacol. 2018 Nov 15;359:24-33
pubmed: 30236989
Kidney Int. 1996 Jun;49(6):1774-7
pubmed: 8743495
Nat Rev Nephrol. 2015 Mar;11(3):135-49
pubmed: 25599618
Saudi J Kidney Dis Transpl. 2012 Nov;23(6):1202-7
pubmed: 23168849
Kidney Int. 2013 Apr;83(4):568-81
pubmed: 23325082
Int J Mol Sci. 2019 Feb 25;20(4):
pubmed: 30823590
J Clin Invest. 2011 Jun;121(6):2181-96
pubmed: 21606597
J Am Soc Nephrol. 2008 Jan;19(1):151-7
pubmed: 18057216
Sci Rep. 2018 Mar 2;8(1):3953
pubmed: 29500423
Int J Mol Sci. 2016 Jun 21;17(6):
pubmed: 27338360
BMC Nephrol. 2019 Apr 25;20(1):141
pubmed: 31023251
Int J Mol Sci. 2017 Dec 20;18(12):
pubmed: 29261130
PLoS One. 2017 Nov 9;12(11):e0187752
pubmed: 29121074
Am J Kidney Dis. 2016 Apr;67(4):601-8
pubmed: 26747633
FASEB J. 2019 Nov;33(11):12253-12263
pubmed: 31431054
Nephron Physiol. 2007;105(1):p1-10
pubmed: 17095876
Oncogene. 2020 Jan;39(3):617-636
pubmed: 31527668
Am J Kidney Dis. 2019 Dec;74(6):751-760
pubmed: 31358312
Hypertension. 2012 Nov;60(5):1242-9
pubmed: 23045468
J Diabetes Res. 2017;2017:9035038
pubmed: 28804725
Clin Exp Pharmacol Physiol. 2003 Jan-Feb;30(1-2):32-7
pubmed: 12542450
Am J Physiol Renal Physiol. 2014 Feb 15;306(4):F367-78
pubmed: 24305473
Am J Physiol Renal Physiol. 2014 May 1;306(9):F970-80
pubmed: 24553434
Clin J Am Soc Nephrol. 2007 Mar;2(2):334-42
pubmed: 17699433
Am J Nephrol. 2018;47(1):40-47
pubmed: 29402767
Int J Biochem Cell Biol. 2013 Sep;45(9):2109-18
pubmed: 23806869
Mol Neurobiol. 2019 Jun;56(6):4346-4363
pubmed: 30315479
Clin Exp Nephrol. 2019 Mar;23(3):395-401
pubmed: 30238383
Horm Res. 2007;68(3):113-23
pubmed: 17351325
Nephrol Dial Transplant. 2016 Nov;31(11):1895-1900
pubmed: 26953592
Kidney Int. 2003 Jun;63(6):2113-22
pubmed: 12753298
Clin J Am Soc Nephrol. 2009 Jan;4(1):71-6
pubmed: 19019999
PLoS One. 2017 Nov 6;12(11):e0187764
pubmed: 29108006
Am J Physiol Renal Physiol. 2015 Jun 1;308(11):F1189-96
pubmed: 25656371
Lancet. 1993 Feb 6;341(8841):339-41
pubmed: 8094115
J Am Soc Nephrol. 2013 Nov;24(11):1901-12
pubmed: 23949796