The Zebrafish Embryo as a Model to Test Protective Effects of Food Antioxidant Compounds.
Animals
Antioxidants
/ administration & dosage
Apigenin
/ administration & dosage
Biological Factors
/ administration & dosage
Carotenoids
/ administration & dosage
Curcumin
/ administration & dosage
Disease Models, Animal
Dose-Response Relationship, Drug
Embryo, Nonmammalian
/ drug effects
Embryonic Development
/ drug effects
Flavanones
/ administration & dosage
Lycopene
/ administration & dosage
Oxidative Stress
/ drug effects
Polyphenols
/ administration & dosage
Xanthophylls
/ administration & dosage
Zebrafish
/ embryology
beta Carotene
/ administration & dosage
tert-Butylhydroperoxide
/ adverse effects
antioxidant effect
carotenoids
oxidative stress
polyphenols
zebrafish embryo
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
24 Sep 2021
24 Sep 2021
Historique:
received:
12
08
2021
revised:
06
09
2021
accepted:
14
09
2021
entrez:
13
10
2021
pubmed:
14
10
2021
medline:
17
11
2021
Statut:
epublish
Résumé
The antioxidant activity of food compounds is one of the properties generating the most interest, due to its health benefits and correlation with the prevention of chronic disease. This activity is usually measured using in vitro assays, which cannot predict in vivo effects or mechanisms of action. The objective of this study was to evaluate the in vivo protective effects of six phenolic compounds (naringenin, apigenin, rutin, oleuropein, chlorogenic acid, and curcumin) and three carotenoids (lycopene B, β-carotene, and astaxanthin) naturally present in foods using a zebrafish embryo model. The zebrafish embryo was pretreated with each of the nine antioxidant compounds and then exposed to tert-butyl hydroperoxide (tBOOH), a known inducer of oxidative stress in zebrafish. Significant differences were determined by comparing the concentration-response of the tBOOH induced lethality and dysmorphogenesis against the pretreated embryos with the antioxidant compounds. A protective effect of each compound, except β-carotene, against oxidative-stress-induced lethality was found. Furthermore, apigenin, rutin, and curcumin also showed protective effects against dysmorphogenesis. On the other hand, β-carotene exhibited increased lethality and dysmorphogenesis compared to the tBOOH treatment alone.
Identifiants
pubmed: 34641329
pii: molecules26195786
doi: 10.3390/molecules26195786
pmc: PMC8510019
pii:
doi:
Substances chimiques
Antioxidants
0
Biological Factors
0
Flavanones
0
Polyphenols
0
Xanthophylls
0
beta Carotene
01YAE03M7J
Carotenoids
36-88-4
Apigenin
7V515PI7F6
astaxanthine
8XPW32PR7I
tert-Butylhydroperoxide
955VYL842B
naringenin
HN5425SBF2
Curcumin
IT942ZTH98
Lycopene
SB0N2N0WV6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Economía y Competitividad
ID : AGL2013-49083-C3-1-R
Références
Ann Intern Med. 2017 Aug 15;167(4):228-235
pubmed: 28693036
J Biochem Mol Toxicol. 2003;17(1):24-38
pubmed: 12616644
Rep Biochem Mol Biol. 2018 Oct;7(1):76-84
pubmed: 30324121
Eur J Nutr. 2017 Oct;56(7):2215-2244
pubmed: 28391515
Arch Latinoam Nutr. 2006 Jun;56(2):110-22
pubmed: 17024955
BMJ. 2017 Nov 22;359:j5024
pubmed: 29167102
Immunobiology. 2019 Mar;224(2):242-253
pubmed: 30739804
Nature. 2006 Oct 19;443(7113):787-95
pubmed: 17051205
Nutrients. 2014 Jan 27;6(2):466-88
pubmed: 24473231
Physiol Rev. 2002 Jan;82(1):47-95
pubmed: 11773609
Birth Defects Res C Embryo Today. 2007 Sep;81(3):155-62
pubmed: 17963268
Indian J Clin Biochem. 2015 Jan;30(1):11-26
pubmed: 25646037
Subcell Biochem. 2016;79:359-75
pubmed: 27485230
J Sci Food Agric. 2010 May;90(7):1238-44
pubmed: 20394007
Curr Pharm Des. 2018;24(40):4771-4778
pubmed: 30767733
Mol Immunol. 2002 Feb;38(10):713-21
pubmed: 11841831
Ann Pharm Fr. 2006 Nov;64(6):383-9
pubmed: 17119467
Arch Biochem Biophys. 2018 Aug 15;652:18-26
pubmed: 29885291
Food Chem Toxicol. 1999 Sep-Oct;37(9-10):937-42
pubmed: 10541448
Nutr Cancer. 1993;20(1):21-9
pubmed: 8415127
Curr Pharm Des. 2018;24(40):4711-4725
pubmed: 30644343
Oxid Med Cell Longev. 2018 Jan 31;2018:9719584
pubmed: 29643982
Antioxidants (Basel). 2020 Aug 08;9(8):
pubmed: 32784515
Reprod Toxicol. 2012 Apr;33(2):142-54
pubmed: 21871558
Cytotechnology. 2009 Jan;59(1):45-53
pubmed: 19353300
Curr Hypertens Rev. 2015;11(2):132-42
pubmed: 26022210
Food Chem. 2012 Sep 15;134(2):717-24
pubmed: 23107683
Nutr Hosp. 2002 Nov-Dec;17(6):271-8
pubmed: 12514919
Dev Dyn. 1995 Jul;203(3):253-310
pubmed: 8589427
Nutrients. 2015 Dec 25;8(1):
pubmed: 26712785
J Med Chem. 1994 Sep 30;37(20):3353-62
pubmed: 7932563
Antioxidants (Basel). 2018 Feb 11;7(2):
pubmed: 29439455
Mol Aspects Med. 2003 Dec;24(6):345-51
pubmed: 14585305
Chin J Integr Med. 2018 Jul;24(7):551-560
pubmed: 25501296
Mar Drugs. 2014 Jan 07;12(1):128-52
pubmed: 24402174
Ann Med. 2010 Apr;42(3):178-86
pubmed: 20350251
J Nat Prod. 2000 Jul;63(7):1035-42
pubmed: 10924197
Toxicol In Vitro. 2013 Feb;27(1):469-78
pubmed: 22898132
Redox Biol. 2015;4:180-3
pubmed: 25588755