Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology.


Journal

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
ISSN: 1878-7479
Titre abrégé: Neurotherapeutics
Pays: United States
ID NLM: 101290381

Informations de publication

Date de publication:
07 2021
Historique:
accepted: 30 09 2021
pubmed: 15 10 2021
medline: 4 3 2022
entrez: 14 10 2021
Statut: ppublish

Résumé

This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.

Identifiants

pubmed: 34648141
doi: 10.1007/s13311-021-01137-z
pii: 10.1007/s13311-021-01137-z
pmc: PMC8608973
doi:

Substances chimiques

Oligonucleotides, Antisense 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1500-1514

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM119550
Pays : United States

Informations de copyright

© 2021. The American Society for Experimental NeuroTherapeutics, Inc.

Références

Carvill GL, Heavin SB, Yendle SC et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nature genetics, 45(7), 825-830 (2013).
pubmed: 23708187 pmcid: 3704157
Epi4K Consortium. De novo mutations in epileptic encephalopathies. Nature, 501(7466), 217–221 (2013).
McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol, 15(3), 304-316 (2015).
pubmed: 26597089
Truty R, Patil N, Sankar R et al. Possible precision medicine implications from genetic testing using combined detection of sequence and intragenic copy number variants in a large cohort with childhood epilepsy. Epilepsia Open, 4(3), 397-408 (2019).
pubmed: 31440721 pmcid: 6698688
Helbig KL, Farwell Hagman KD, Shinde DN et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med, 18(9), 898-905 (2016).
pubmed: 26795593
Perucca P, Scheffer IE, Harvey AS et al. Real-world utility of whole exome sequencing with targeted gene analysis for focal epilepsy. Epilepsy Res, 131, 1-8 (2017).
pubmed: 28199897
Sánchez Fernández I, Loddenkemper T, Gaínza-Lein M, Sheidley BR, Poduri A. Diagnostic yield of genetic tests in epilepsy: A meta-analysis and cost-effectiveness study. Neurology, 92(5), e418-428 (2019).
pmcid: 6369901
Wang J, Gotway G, Pascual JM, Park JY. Diagnostic yield of clinical next-generation sequencing panels for epilepsy. JAMA Neurol, 71(5), 650-651 (2014).
pubmed: 24818677
Consortium EK. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol, 16(2), 135-143 (2017).
Collaborative E. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. American journal of human genetics, 105(2), 267-282 (2019).
ILAE. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nature communications, 9(1), 5269 (2018).
Papuc SM, Abela L, Steindl K et al. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet, 27(3), 408-421 (2019).
pubmed: 30552426
Scheffer IE, Nabbout R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 60 Suppl 3, S17-s24 (2019).
pubmed: 31904117
Han Z, Chen C, Christiansen A et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Science translational medicine, 12(558) (2020).
Lammertse HCA, van Berkel AA, Iacomino M et al. Homozygous STXBP1 variant causes encephalopathy and gain-of-function in synaptic transmission. Brain, (2019).
Meisler MH, Helman G, Hammer MF et al. SCN8A encephalopathy: Research progress and prospects. Epilepsia, 57(7), 1027-1035 (2016).
pubmed: 27270488 pmcid: 5495462
Lenk GM, Jafar-Nejad P, Hill SF et al. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Annals of neurology, 87(3), 339-346 (2020).
pubmed: 31943325 pmcid: 7064908
Burbano LE, Li M, Jancovski N et al. Antisense oligonucleotide therapy for KCNT1 encephalopathy. bioRxiv, 2020.2011.2012.379164 (2020).
Bunton-Stasyshyn RKA, Wagnon JL, Wengert ER et al. Prominent role of forebrain excitatory neurons inSCN8Aencephalopathy. Brain, 142(2), 362-375 (2019).
pubmed: 30601941 pmcid: 6351781
Zhu B, Mak JCH, Morris AP et al. Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanized Caenorhabditis elegans. Epilepsia, 61(4), 810-821 (2020).
pubmed: 32112430 pmcid: 8614121
Liu A, Xu X, Yang X et al. The clinical spectrum of female epilepsy patients with PCDH19 mutations in a Chinese population. Clin Genet, 91(1), 54-62 (2016).
pubmed: 27527380
Orhan G, Bock M, Schepers D et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Annals of neurology, 75(3), 382-394 (2014).
pubmed: 24318194
Huang X, Zhou C, Tian M et al. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2(+/Q390X) Dravet syndrome mice. Epilepsia, 58(8), 1451-1461 (2017).
pubmed: 28586508 pmcid: 5554098
Mefford HC, Yendle SC, Hsu C et al. Rare copy number variants are an important cause of epileptic encephalopathies. Annals of neurology, 70(6), 974-985 (2011).
pubmed: 22190369 pmcid: 3245646
Mullen SA, Carvill GL, Bellows S et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology, 81(17), 1507-1514 (2013).
pubmed: 24068782 pmcid: 3888172
Coppola A, Cellini E, Stamberger H et al. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia, 60(4), 689-706 (2019).
pubmed: 30866059 pmcid: 6488157
Niestroj LM, Perez-Palma E, Howrigan DP et al. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain, 143(7), 2106-2118 (2020).
pubmed: 32568404 pmcid: 7364765
Heinzen EL, Radtke RA, Urban TJ et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. American journal of human genetics, 86(5), 707-718 (2010).
pubmed: 20398883 pmcid: 2869004
Mefford HC, Muhle H, Ostertag P et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS genetics, 6(5), e1000962 (2010).
pubmed: 20502679 pmcid: 2873910
Qiu Y, Arbogast T, Lorenzo SM et al. Oligogenic Effects of 16p11.2 Copy-Number Variation on Craniofacial Development. Cell reports, 28(13), 3320–3328.e3324 (2019).
Tan WH, Bird LM. Angelman syndrome: Current and emerging therapies in 2016. Am J Med Genet C Semin Med Genet, 172(4), 384-401 (2016).
pubmed: 27860204
Kaur S, Christodoulou J. MECP2 Disorders. In: GeneReviews(®). Adam, MP, Ardinger, HH, Pagon, RA et al. (Eds.) (University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., Seattle (WA), 1993)
Van Esch H. MECP2 Duplication Syndrome. In: GeneReviews(®). Adam, MP, Ardinger, HH, Pagon, RA et al. (Eds.) (University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., Seattle (WA), 1993)
Olson HE, Demarest ST, Pestana-Knight EM et al. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr Neurol, 97, 18-25 (2019).
pubmed: 30928302 pmcid: 7120929
Gecz J, Thomas PQ. Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr Opin Genet Dev, 65, 169-175 (2020).
pubmed: 32726744
Miceli F, Soldovieri MV, Joshi N, Weckhuysen S, Cooper E, Taglialatela M. KCNQ2-Related Disorders. In: GeneReviews((R)). Adam, MP, Ardinger, HH, Pagon, RA et al. (Eds.) (University of Washington, SeattleUniversity of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., Seattle (WA), 2018)
Mulkey SB, Ben-Zeev B, Nicolai J et al. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia, 58(3), 436-445 (2017).
pubmed: 28139826 pmcid: 5339037
Millichap JJ, Miceli F, De Maria M et al. Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia, 58(1), e10-e15 (2017).
pubmed: 27861786
Sanders SJ, Campbell AJ, Cottrell JR et al. Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends Neurosci, 41(7), 442-456 (2018).
pubmed: 29691040 pmcid: 6015533
Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med, 7(1), 33-40 (2001).
pubmed: 11135613
Waldrop MA, Karingada C, Storey MA et al. Gene Therapy for Spinal Muscular Atrophy: Safety and Early Outcomes. Pediatrics, 146(3) (2020).
Chien YH, Lee NC, Tseng SH et al. Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child Adolesc Health, 1(4), 265-273 (2017).
pubmed: 30169182
Katz ML, Tecedor L, Chen Y et al. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease. Science translational medicine, 7(313), 313ra180 (2015).
pubmed: 26560358 pmcid: 4968409
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am, 31(5), 753-770 (2017).
pubmed: 28895845
Yu W, Smolen CE, Hill SF, Meisler MH. Spontaneous seizures and elevated seizure susceptibility in response to somatic mutation of sodium channel Scn8a in the mouse. Hum Mol Genet, (2021).
Lynam L. Case management and critical pathways: friend or foe? Neonatal Netw, 13(8), 48–49, 51 (1994).
Liu L, Yang J, Men K et al. Current Status of Nonviral Vectors for Gene Therapy in China. Hum Gene Ther, 29(2), 110-120 (2018).
pubmed: 29320893
Gadalla KKE, Vudhironarit T, Hector RD et al. Development of a Novel AAV Gene Therapy Cassette with Improved Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol Ther Methods Clin Dev, 5, 180-190 (2017).
pubmed: 28497075 pmcid: 5423329
Maturana CJ, Verpeut JL, Pisano TJ et al. Small Alphaherpesvirus Latency-Associated Promoters Drive Efficient and Long-Term Transgene Expression in the CNS. Mol Ther Methods Clin Dev, 17, 843-857 (2020).
pubmed: 32368565 pmcid: 7191541
Gray SJ, Foti SB, Schwartz JW et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther, 22(9), 1143-1153 (2011).
pubmed: 21476867 pmcid: 3177952
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther, 26(10), 2337-2356 (2018).
pubmed: 30093306 pmcid: 6171037
Chamberlain JR, Chamberlain JS. Progress toward Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther, 25(5), 1125-1131 (2017).
pubmed: 28416280 pmcid: 5417844
Howard ZM, Dorn LE, Lowe J et al. Micro-dystrophin gene therapy prevents heart failure in an improved Duchenne muscular dystrophy cardiomyopathy mouse model. JCI Insight, (2021).
Richardson RM, Bankiewicz KS, Christine CW et al. Data-driven evolution of neurosurgical gene therapy delivery in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 91(11), 1210-1218 (2020).
pubmed: 32732384
Rosenberg JB, Chen A, De BP et al. Safety of Direct Intraparenchymal AAVrh.10-mediated CNS Gene Therapy for Metachromatic Leukodystrophy. Hum Gene Ther, (2020).
Sondhi D, Kaminsky SM, Hackett NR et al. Slowing late infantile Batten disease by direct brain parenchymal administration of a rh.10 adeno-associated virus expressing CLN2. Science translational medicine, 12(572) (2020).
Frangoul H, Altshuler D, Cappellini MD et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med, 384(3), 252-260 (2021).
pubmed: 33283989
Maeder ML, Stefanidakis M, Wilson CJ et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med, 25(2), 229-233 (2019).
pubmed: 30664785
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821 (2012).
pubmed: 22745249 pmcid: 6286148
Mali P, Yang L, Esvelt KM et al. RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826 (2013).
pubmed: 23287722 pmcid: 3712628
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol, 20(8), 490-507 (2019).
pubmed: 31147612 pmcid: 7079207
Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149-157 (2019).
pubmed: 31634902 pmcid: 6907074
Kurt IC, Zhou R, Iyer S et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature biotechnology, 39(1), 41-46 (2021).
pubmed: 32690971
Sakata RC, Ishiguro S, Mori H et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature biotechnology, 38(7), 865-869 (2020).
pubmed: 32483365
Zhang X, Zhu B, Chen L et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature biotechnology, 38(7), 856-860 (2020).
pubmed: 32483363
Ryu SM, Koo T, Kim K et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nature biotechnology, 36(6), 536-539 (2018).
pubmed: 29702637
Chen H, Shi M, Gilam A et al. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Scientific reports, 9(1), 16838 (2019).
pubmed: 31727959 pmcid: 6856096
Chen J, An B, Yu B et al. CRISPR/Cas9-mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica, 106(3), 829-837 (2021).
pubmed: 31974191
Koblan LW, Erdos MR, Wilson C et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature, 589(7843), 608-614 (2021).
pubmed: 33408413 pmcid: 7872200
Lander ES, Baylis F, Zhang F et al. Adopt a moratorium on heritable genome editing. Nature, 567(7747), 165-168 (2019).
pubmed: 30867611
Neil EE, Bisaccia EK. Nusinersen: A Novel Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy. J Pediatr Pharmacol Ther, 24(3), 194-203 (2019).
pubmed: 31093018 pmcid: 6510522
Rigo F, Hua Y, Krainer AR, Bennett CF. Antisense-based therapy for the treatment of spinal muscular atrophy. J Cell Biol, 199(1), 21-25 (2012).
pubmed: 23027901 pmcid: 3461520
Aartsma-Rus A, Krieg AM. FDA Approves Eteplirsen for Duchenne Muscular Dystrophy: The Next Chapter in the Eteplirsen Saga. Nucleic acid therapeutics, 27(1), 1-3 (2017).
pubmed: 27929755 pmcid: 5312460
Walder RY, Walder JA. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A, 85(14), 5011-5015 (1988).
pubmed: 2839827 pmcid: 281677
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic acids research, 44(14), 6549-6563 (2016).
pubmed: 27288447 pmcid: 5001604
Liang XH, Shen W, Sun H, Migawa MT, Vickers TA, Crooke ST. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nature biotechnology, 34(8), 875-880 (2016).
pubmed: 27398791
Liang XH, Sun H, Shen W et al. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic acids research, 45(16), 9528-9546 (2017).
pubmed: 28934489 pmcid: 5766168
Lim KH, Han Z, Jeon HY et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nature communications, 11(1), 3501 (2020).
pubmed: 32647108 pmcid: 7347940
Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature, 518(7539), 409-412 (2015).
pubmed: 25470045
Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. Rna, 14(5), 802-813 (2008).
pubmed: 18369186 pmcid: 2327353
Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol, 5(4), e73 (2007).
pubmed: 17355180 pmcid: 1820610
Kuespert S, Heydn R, Peters S et al. Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2-A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling. Int J Mol Sci, 21(6) (2020).
Stein H, Hausen P. Enzyme from calf thymus degrading the RNA moiety of DNA-RNA Hybrids: effect on DNA-dependent RNA polymerase. Science, 166(3903), 393-395 (1969).
pubmed: 5812039
Lai F, Damle SS, Ling KK, Rigo F. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell, 77(5), 1032-1043.e1034 (2020).
pubmed: 31924447
Li M, Jancovski N, Jafar-Nejad P et al. Antisense oligonucleotide therapy for SCN2A gain-of-function epilepsy. bioRxiv, 2020.2009.2009.289900 (2020).
Kim J, Hu C, Moufawad El Achkar C et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. N Engl J Med, 381(17), 1644-1652 (2019).
pubmed: 31597037 pmcid: 6961983
Wu H, Lima WF, Crooke ST. Properties of cloned and expressed human RNase H1. The Journal of biological chemistry, 274(40), 28270-28278 (1999).
pubmed: 10497183
Kamola PJ, Kitson JD, Turner G et al. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic acids research, 43(18), 8638-8650 (2015).
pubmed: 26338776 pmcid: 4605310
Scharner J, Ma WK, Zhang Q et al. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Nucleic acids research, 48(2), 802-816 (2020).
pubmed: 31802121
Ramos DM, d’Ydewalle C, Gabbeta V et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Invest, 129(11), 4817-4831 (2019).
pubmed: 31589162 pmcid: 6819103
Mazur C, Powers B, Zasadny K et al. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight, 4(20) (2019).
Sullivan JM, Mazur C, Wolf DA et al. Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system. J Transl Med, 18(1), 309 (2020).
pubmed: 32771027 pmcid: 7414676
Colasante G, Lignani G, Brusco S et al. dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Mol Ther, 28(1), 235-253 (2020).
pubmed: 31607539
Safary A, Akbarzadeh Khiavi M, Mousavi R, Barar J, Rafi MA. Enzyme replacement therapies: what is the best option? Bioimpacts, 8(3), 153-157 (2018).
pubmed: 30211074 pmcid: 6128977
Chand D, Mohr F, McMillan H et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol, 74(3), 560-566 (2021).
pubmed: 33186633
Korte S, Runge F, Wozniak MM et al. Range of Neurological Signs in Cynomolgus Monkeys After Intrathecal Bolus Administration of Antisense Oligonucleotides. Int J Toxicol, 39(6), 505-509 (2020).
pubmed: 32794413

Auteurs

Gemma L Carvill (GL)

Departments of Neurology, Pharmacology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Tyler Matheny (T)

Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA.

Jay Hesselberth (J)

Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA.

Scott Demarest (S)

Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA. Scott.Demarest@childrenscolorado.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH