A photoregulatory mechanism of the circadian clock in Arabidopsis.


Journal

Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677

Informations de publication

Date de publication:
10 2021
Historique:
received: 09 03 2021
accepted: 03 08 2021
entrez: 15 10 2021
pubmed: 16 10 2021
medline: 6 11 2021
Statut: ppublish

Résumé

Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N

Identifiants

pubmed: 34650267
doi: 10.1038/s41477-021-01002-z
pii: 10.1038/s41477-021-01002-z
doi:

Substances chimiques

Cryptochromes 0
Photoreceptors, Plant 0
N-methyladenosine CLE6G00625
Adenosine K72T3FS567

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1397-1408

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM056265
Pays : United States

Commentaires et corrections

Type : CommentIn
Type : ErratumIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Sanchez, S. E., Rugnone, M. L. & Kay, S. A. Light perception: a matter of time. Mol. Plant 13, 363–385 (2020).
doi: 10.1016/j.molp.2020.02.006 pubmed: 32068156
Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).
doi: 10.1038/s41580-019-0179-2 pubmed: 31768006
Webb, A. A. R., Seki, M., Satake, A. & Caldana, C. Continuous dynamic adjustment of the plant circadian oscillator. Nat. Commun. 10, 550 (2019).
pubmed: 30710080 pmcid: 6358598 doi: 10.1038/s41467-019-08398-5
Wang, Q. & Lin, C. Mechanisms of cryptochrome-mediated photoresponses in plants. Annu. Rev. Plant Biol. 71, 103–129 (2020).
pubmed: 32169020 pmcid: 7428154 doi: 10.1146/annurev-arplant-050718-100300
Cashmore, A. R. Cryptochromes: enabling plants and animals to determine circadian time. Cell 114, 537–543 (2003).
pubmed: 13678578
Sancar, A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 31–67 (2000).
doi: 10.1146/annurev.biochem.69.1.31 pubmed: 10966452
Bailey-Serres, J., Zhai, J. & Seki, M. The dynamic kaleidoscope of RNA biology in plants. Plant Physiol. 182, 1–9 (2020).
pubmed: 31908318 pmcid: 6945830 doi: 10.1104/pp.19.01558
Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. eLife; https://doi.org/10.7554/eLife.49658 (2020).
Wang, C. Y., Yeh, J. K., Shie, S. S., Hsieh, I. C. & Wen, M. S. Circadian rhythm of RNA N6-methyladenosine and the role of cryptochrome. Biochem. Biophys. Res. Commun. 465, 88–94 (2015).
doi: 10.1016/j.bbrc.2015.07.135 pubmed: 26239657
Fustin, J. M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806 (2013).
pubmed: 24209618 doi: 10.1016/j.cell.2013.10.026
Anderson, S. J. et al. N
pubmed: 30380407 doi: 10.1016/j.celrep.2018.10.020
Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).
pubmed: 24284625 doi: 10.1038/nature12730
Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).
pubmed: 31520073 doi: 10.1038/s41580-019-0168-5
Shen, L., Liang, Z., Wong, C. E. & Yu, H. Messenger RNA modifications in plants. Trends Plant Sci. 24, 328–341 (2019).
doi: 10.1016/j.tplants.2019.01.005 pubmed: 30745055
Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).
doi: 10.1038/nrm.2016.132 pubmed: 27808276
Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 8, 176–189 (2013).
doi: 10.1038/nprot.2012.148 pubmed: 23288318
Wang, Z. Y. & Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998).
doi: 10.1016/S0092-8674(00)81464-6 pubmed: 9657153
Liu, Q. et al. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8, 15234 (2017).
pubmed: 28492234 pmcid: 5437284 doi: 10.1038/ncomms15234
Arribas-Hernandez, L. & Brodersen, P. Occurrence and functions of m(6)A and other covalent modifications in plant mRNA. Plant Physiol. 182, 79–96 (2020).
doi: 10.1104/pp.19.01156 pubmed: 31748418
Ruzicka, K. et al. Identification of factors required for m
pubmed: 28503769 pmcid: 5488176 doi: 10.1111/nph.14586
Zhong, S. et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278–1288 (2008).
pubmed: 18505803 pmcid: 2438467 doi: 10.1105/tpc.108.058883
Chen, Y. et al. Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases. Nat. Commun. 12, 2155 (2021).
pubmed: 33846325 pmcid: 8042123 doi: 10.1038/s41467-021-22410-x
Yu, X. et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19, 3146–3156 (2007).
pubmed: 17965271 pmcid: 2174722 doi: 10.1105/tpc.107.053017
Liu, Q. et al. Photooligomerization determines photosensitivity and photoreactivity of plant cryptochromes. Mol. Plant 13, 398–413 (2020).
pubmed: 31953223 doi: 10.1016/j.molp.2020.01.002
Liu, H. et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539 (2008).
pubmed: 18988809 doi: 10.1126/science.1163927
Wang, Q. et al. Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354, 343–347 (2016).
pubmed: 27846570 pmcid: 6180212 doi: 10.1126/science.aaf9030
Yu, X. et al. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21, 118–130 (2009).
pubmed: 19141709 pmcid: 2648085 doi: 10.1105/tpc.108.061663
Mas, P., Devlin, P. F., Panda, S. & Kay, S. A. Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207–211 (2000).
pubmed: 11089975 doi: 10.1038/35041583
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science https://doi.org/10.1126/science.aar3958 (2018).
Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480 e1413 (2018).
pubmed: 30500534 pmcid: 6724719 doi: 10.1016/j.cell.2018.10.048
Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168, 159–171 e114 (2017).
doi: 10.1016/j.cell.2016.11.054 pubmed: 28041848
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
pubmed: 32312191 pmcid: 7469089 doi: 10.1146/annurev-physchem-071819-113553
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).
pubmed: 30682370 pmcid: 6445271 doi: 10.1016/j.cell.2018.12.035
Wang, Q. et al. The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2. Mol. Plant 8, 631–643 (2015).
doi: 10.1016/j.molp.2015.03.005 pubmed: 25792146
Shalitin, D. et al. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417, 763–767 (2002).
doi: 10.1038/nature00815 pubmed: 12066190
Devlin, P. F. & Kay, S. A. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499–2510 (2000).
pubmed: 11148293 pmcid: 102233 doi: 10.1105/tpc.12.12.2499
Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998).
doi: 10.1126/science.282.5393.1488 pubmed: 9822379
Bodi, Z. et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3ʹ end and reduced levels cause developmental defects. Front. Plant Sci. 3, 48 (2012).
pubmed: 22639649 pmcid: 3355605 doi: 10.3389/fpls.2012.00048
Guo, H., Yang, H., Mockler, T. C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998).
doi: 10.1126/science.279.5355.1360 pubmed: 9478898
Legris, M., Ince, Y. C. & Fankhauser, C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10, 5219 (2019).
pubmed: 31745087 pmcid: 6864062 doi: 10.1038/s41467-019-13045-0
Leivar, P. & Quail, P. H. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16, 19–28 (2011).
doi: 10.1016/j.tplants.2010.08.003 pubmed: 20833098
Bhat, S. S. et al. mRNA adenosine methylase (MTA) deposits m(6)A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 117, 21785–21795 (2020).
pubmed: 32817553 pmcid: 7474595 doi: 10.1073/pnas.2003733117
Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25, 11–28 (1960).
doi: 10.1101/SQB.1960.025.01.004 pubmed: 13684695
Jang, G. J., Yang, J. Y., Hsieh, H. L. & Wu, S. H. Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. Proc. Natl Acad. Sci. USA 116, 6451–6456 (2019).
pubmed: 30850529 pmcid: 6442596 doi: 10.1073/pnas.1900084116
Godoy Herz, M. A. et al. Light regulates plant alternative splicing through the control of transcriptional elongation. Mol. Cell 73, 1066–1074 e1063 (2019).
doi: 10.1016/j.molcel.2018.12.005 pubmed: 30661982
Wu, S. H. Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annu. Rev. Plant Biol. 65, 311–333 (2014).
doi: 10.1146/annurev-arplant-050213-040337 pubmed: 24779996
Paik, I., Yang, S. & Choi, G. Phytochrome regulates translation of mRNA in the cytosol. Proc. Natl Acad. Sci. USA 109, 1335–1340 (2012).
pubmed: 22232680 pmcid: 3268310 doi: 10.1073/pnas.1109683109
Juntawong, P. & Bailey-Serres, J. Dynamic light regulation of translation status in Arabidopsis thaliana. Front. Plant Sci. 3, 66 (2012).
pubmed: 22645595 pmcid: 3355768 doi: 10.3389/fpls.2012.00066
Wang, X. et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 24, 3278–3295 (2012).
pubmed: 22942380 pmcid: 3462631 doi: 10.1105/tpc.112.100081
Mockler, T. C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).
pubmed: 10207133 doi: 10.1242/dev.126.10.2073
Harmoko, R. et al. RNA-dependent RNA polymerase 6 is required for efficient hpRNA-induced gene silencing in plants. Mol. Cells 35, 202–209 (2013).
pubmed: 23456296 pmcid: 3887914 doi: 10.1007/s10059-013-2203-2
Clough, S. J. Floral dip: agrobacterium-mediated germ line transformation. Methods Mol. Biol. 286, 91–102 (2005).
pubmed: 15310915
Wu, F. H. et al. Tape-Arabidopsis Sandwich – a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).
pubmed: 19930690 pmcid: 2794253 doi: 10.1186/1746-4811-5-16
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Fang, X. et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 569, 265–269 (2019).
pubmed: 31043738 pmcid: 6625965 doi: 10.1038/s41586-019-1165-8
Rapsomaniki, M. A. et al. easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics 28, 1800–1801 (2012).
pubmed: 22543368 doi: 10.1093/bioinformatics/bts241
Tseng, Q. et al. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11, 2231–2240 (2011).
pubmed: 21523273 doi: 10.1039/c0lc00641f
Lund, F. W. et al. SpatTrack: an imaging toolbox for analysis of vesicle motility and distribution in living cells. Traffic 15, 1406–1429 (2014).
doi: 10.1111/tra.12228 pubmed: 25243614
Ries, R. J. et al. m(6)A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).
pubmed: 31292544 pmcid: 6662915 doi: 10.1038/s41586-019-1374-1
Zielinski, T., Moore, A. M., Troup, E., Halliday, K. J. & Millar, A. J. Strengths and limitations of period estimation methods for circadian data. PLoS ONE 9, e96462 (2014).
pubmed: 24809473 pmcid: 4014635 doi: 10.1371/journal.pone.0096462
Moore, A., Zielinski, T. & Millar, A. J. in Plant Circadian Networks: Methods and Protocols (ed. Staiger, D.) 13–44 (Springer, 2014).
Hutchison, A. L. et al. Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. PLoS Comput. Biol. 11, e1004094 (2015).
pubmed: 25793520 pmcid: 4368642 doi: 10.1371/journal.pcbi.1004094
Chantarachot, T. et al. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. Nat. Plants 6, 675–685 (2020).
pubmed: 32483330 doi: 10.1038/s41477-020-0681-8
Sorenson, R. S., Deshotel, M. J., Johnson, K., Adler, F. R. & Sieburth, L. E. Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc. Natl Acad. Sci. USA 115, E1485–E1494 (2018).
pubmed: 29386391 pmcid: 5816150 doi: 10.1073/pnas.1712312115
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45 (2001).
pubmed: 11328886 pmcid: 55695 doi: 10.1093/nar/29.9.e45
Trcek, T., Larson, D. R., Moldon, A., Query, C. C. & Singer, R. H. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147, 1484–1497 (2011).
pubmed: 22196726 pmcid: 3286490 doi: 10.1016/j.cell.2011.11.051
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408 pmcid: 4053844 doi: 10.1186/gb-2013-14-4-r36
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
pubmed: 18516045 doi: 10.1038/nmeth.1226
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
pubmed: 22383036 pmcid: 3334321 doi: 10.1038/nprot.2012.016
Luo, G. Z. et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun. 5, 5630 (2014).
doi: 10.1038/ncomms6630 pubmed: 25430002
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Yang, Y., Li, Y., Sancar, A. & Oztas, O. The circadian clock shapes the Arabidopsis transcriptome by regulating alternative splicing and alternative polyadenylation. J. Biol. Chem. 295, 7608–7619 (2020).
pubmed: 32303634 pmcid: 7261790 doi: 10.1074/jbc.RA120.013513
Romanowski, A., Schlaen, R. G., Perez-Santangelo, S., Mancini, E. & Yanovsky, M. J. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. Plant J. 103, 889–902 (2020).
doi: 10.1111/tpj.14776 pubmed: 32314836
Li, S. et al. CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res. 45, D397–D403 (2017).
pubmed: 27789706
Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A. & Harmer, S. L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130 (2008).
pubmed: 18710561 pmcid: 2575520 doi: 10.1186/gb-2008-9-8-r130

Auteurs

Xu Wang (X)

Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Bochen Jiang (B)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Lianfeng Gu (L)

Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.

Yadi Chen (Y)

Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.

Manuel Mora (M)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Mulangma Zhu (M)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Eliace Noory (E)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Qin Wang (Q)

Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China. qinwangcry@163.com.

Chentao Lin (C)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA. clin@mcdb.ucla.edu.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Classifications MeSH