PD-1 blockade therapy augments the antitumor effects of lymphodepletion and adoptive T cell transfer.
Immune checkpoint
Lymphodepletion
PD-1
T cell
Journal
Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
20
03
2021
accepted:
01
10
2021
pubmed:
18
10
2021
medline:
25
5
2022
entrez:
17
10
2021
Statut:
ppublish
Résumé
Lymphodepleting cytotoxic regimens enhance the antitumor effects of adoptively transferred effector and naïve T cells. Although the mechanisms of antitumor immunity augmentation by lymphodepletion have been intensively investigated, the effects of lymphodepletion followed by T cell transfer on immune checkpoints in the tumor microenvironment remain unclear. The current study demonstrated that the expression of immune checkpoint molecules on transferred donor CD4
Identifiants
pubmed: 34657194
doi: 10.1007/s00262-021-03078-0
pii: 10.1007/s00262-021-03078-0
doi:
Substances chimiques
Programmed Cell Death 1 Receptor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1357-1369Subventions
Organisme : Japan society for promotion of science
ID : 24591157
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Wang LX, Shu S, Plautz GE (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65:9547–9554. https://doi.org/10.1158/0008-5472.Can-05-1175
doi: 10.1158/0008-5472.Can-05-1175
pubmed: 16230420
North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074
doi: 10.1084/jem.155.4.1063
North RJ (1984) Gamma-irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells. Cancer Immunol Immunother: CII 16:175–181
doi: 10.1007/BF00205425
Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. https://doi.org/10.1038/nri3191
doi: 10.1038/nri3191
pubmed: 22437939
pmcid: 6292222
Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science (New York, N.Y.) 348:62–8. https://doi.org/10.1126/science.aaa4967
doi: 10.1126/science.aaa4967
Gauthier J, Bezerra ED, Hirayama AV et al (2020) Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B cell malignancies. Blood. https://doi.org/10.1182/blood.2020006770
doi: 10.1182/blood.2020006770
pubmed: 32076701
pmcid: 7205814
Baba J, Watanabe S, Saida Y et al (2012) Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood 120:2417–2427. https://doi.org/10.1182/blood-2012-02-411124
doi: 10.1182/blood-2012-02-411124
pubmed: 22806892
Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Investig 110:185–192. https://doi.org/10.1172/jci15175
doi: 10.1172/jci15175
pubmed: 12122110
pmcid: 151053
Watanabe S, Arita M, Takahashi M, Saida Y, Koya T, Kikuchi T (2017) Effect of lymphodepletion on donor T Cells and the role of recipient cells persisting after cytotoxic treatments in cancer immunotherapies. Crit Rev Immunol 37:59–73. https://doi.org/10.1615/CritRevImmunol.2018019497
doi: 10.1615/CritRevImmunol.2018019497
pubmed: 29431079
Gattinoni L, Finkelstein SE, Klebanoff CA et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+T cells. J Exp Med 202:907–912. https://doi.org/10.1084/jem.20050732
doi: 10.1084/jem.20050732
pubmed: 16203864
pmcid: 1397916
Klebanoff C, Khong H, Antony P, Palmer D, Restifo N (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117. https://doi.org/10.1016/j.it.2004.12.003
doi: 10.1016/j.it.2004.12.003
pubmed: 15668127
pmcid: 1388277
Kato K, Cho BC, Takahashi M et al (2019) Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20:1506–1517. https://doi.org/10.1016/s1470-2045(19)30626-6
doi: 10.1016/s1470-2045(19)30626-6
pubmed: 31582355
Kang YK, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England) 390:2461–2471. https://doi.org/10.1016/s0140-6736(17)31827-5
doi: 10.1016/s0140-6736(17)31827-5
Ferris RL, Blumenschein G Jr, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867. https://doi.org/10.1056/NEJMoa1602252
doi: 10.1056/NEJMoa1602252
pubmed: 27718784
pmcid: 5564292
Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. https://doi.org/10.1056/NEJMoa1507643
doi: 10.1056/NEJMoa1507643
pubmed: 26412456
pmcid: 5705936
Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. https://doi.org/10.1056/NEJMoa1504627
doi: 10.1056/NEJMoa1504627
pubmed: 26028407
pmcid: 4681400
Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082
doi: 10.1056/NEJMoa1412082
pubmed: 25399552
Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813. https://doi.org/10.1056/NEJMoa1510665
doi: 10.1056/NEJMoa1510665
pubmed: 26406148
pmcid: 5719487
Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092. https://doi.org/10.1056/NEJMoa1801005
doi: 10.1056/NEJMoa1801005
pubmed: 29658856
Sato H, Okonogi N, Nakano T (2020) Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 25:801–809. https://doi.org/10.1007/s10147-020-01666-1
doi: 10.1007/s10147-020-01666-1
pubmed: 32246277
pmcid: 7192886
Kawazoe A, Fukuoka S, Nakamura Y et al (2020) Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol 21:1057–1065. https://doi.org/10.1016/s1470-2045(20)30271-0
doi: 10.1016/s1470-2045(20)30271-0
pubmed: 32589866
McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495. https://doi.org/10.1146/annurev-immunol-041015-055318
doi: 10.1146/annurev-immunol-041015-055318
pubmed: 30676822
Shu SY, Rosenberg SA (1985) Adoptive immunotherapy of newly induced murine sarcomas. Cancer Res 45:1657–1662
pubmed: 3872168
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8. https://doi.org/10.1186/s40425-018-0316-z
doi: 10.1186/s40425-018-0316-z
pubmed: 29357948
pmcid: 5778665
Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment. Cell Death Dis 6:e1792. https://doi.org/10.1038/cddis.2015.162
doi: 10.1038/cddis.2015.162
pubmed: 26086965
pmcid: 4669840
Crespo J, Sun H, Welling TH, Tian Z, Zou W (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 25:214–221. https://doi.org/10.1016/j.coi.2012.12.003
doi: 10.1016/j.coi.2012.12.003
pubmed: 23298609
pmcid: 3636159
Zarour HM (2016) Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res : An Off J Am Assoc Cancer Res 22:1856–1864. https://doi.org/10.1158/1078-0432.Ccr-15-1849
doi: 10.1158/1078-0432.Ccr-15-1849
Saida Y, Watanabe S, Tanaka T et al (2015) Critical roles of chemoresistant effector and regulatory T cells in antitumor immunity after lymphodepleting chemotherapy. J Immunol 195:726–735. https://doi.org/10.4049/jimmunol.1401468
doi: 10.4049/jimmunol.1401468
pubmed: 26041539
Kansy BA, Concha-Benavente F, Srivastava RM et al (2017) PD-1 status in CD8(+) T cells associates with survival and Anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res 77:6353–6364. https://doi.org/10.1158/0008-5472.Can-16-3167
doi: 10.1158/0008-5472.Can-16-3167
pubmed: 28904066
pmcid: 5690836
Kurtulus S, Madi A, Escobar G et al (2019) Checkpoint blockade immunotherapy induces dynamic changes in PD-1(-)CD8(+) tumor-infiltrating T cells. Immunity 50:181–94.e6. https://doi.org/10.1016/j.immuni.2018.11.014
doi: 10.1016/j.immuni.2018.11.014
pubmed: 30635236
pmcid: 6336113
Ueha S, Yokochi S, Ishiwata Y et al (2015) Robust antitumor effects of combined anti-CD4-depleting antibody and anti-PD-1/PD-L1 immune checkpoint antibody treatment in mice. Cancer Immunol Res 3:631–640. https://doi.org/10.1158/2326-6066.Cir-14-0190
doi: 10.1158/2326-6066.Cir-14-0190
pubmed: 25711759
Hsu J, Hodgins JJ, Marathe M et al (2018) Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Investig 128:4654–4668. https://doi.org/10.1172/jci99317
doi: 10.1172/jci99317
pubmed: 30198904
pmcid: 6159991
Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.Cir-16-0297
doi: 10.1158/2326-6066.Cir-16-0297
pubmed: 28052991
pmcid: 5426480
Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, Shu S (2008) Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 181:3291–3300. https://doi.org/10.4049/jimmunol.181.5.3291
doi: 10.4049/jimmunol.181.5.3291
pubmed: 18714001
Tada K, Kitano S, Shoji H et al (2016) Pretreatment immune status correlates with progression-free survival in chemotherapy-treated metastatic colorectal cancer patients. Cancer Immunol Res 4:592–599. https://doi.org/10.1158/2326-6066.CIR-15-0298
doi: 10.1158/2326-6066.CIR-15-0298
pubmed: 27197061
Wang LX (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65:9547–9554. https://doi.org/10.1158/0008-5472.can-05-1175
doi: 10.1158/0008-5472.can-05-1175
pubmed: 16230420
Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215–233. https://doi.org/10.1038/nrd3626
doi: 10.1038/nrd3626
pubmed: 22301798
Chen G, Emens LA (2013) Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother: CII 62:203–216. https://doi.org/10.1007/s00262-012-1388-0
doi: 10.1007/s00262-012-1388-0
pubmed: 23389507
Thommen DS, Schumacher TN (2018) T Cell Dysfunction in cancer. Cancer Cell 33:547–562. https://doi.org/10.1016/j.ccell.2018.03.012
doi: 10.1016/j.ccell.2018.03.012
pubmed: 29634943
pmcid: 7116508
Kamada T, Togashi Y, Tay C et al (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116:9999–10008. https://doi.org/10.1073/pnas.1822001116
doi: 10.1073/pnas.1822001116
pubmed: 31028147
pmcid: 6525547
Serpico AF, Visconti R, Grieco D (2020) Exploiting immune-dependent effects of microtubule-targeting agents to improve efficacy and tolerability of cancer treatment. Cell Death Dis 11:361. https://doi.org/10.1038/s41419-020-2567-0
doi: 10.1038/s41419-020-2567-0
pubmed: 32398657
pmcid: 7217828
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39:74–88. https://doi.org/10.1016/j.immuni.2013.06.014
doi: 10.1016/j.immuni.2013.06.014
pubmed: 23890065
Jure-Kunkel M, Masters G, Girit E, Dito G, Lee F, Hunt JT, Humphrey R (2013) Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunol Immunother : CII 62:1533–1545. https://doi.org/10.1007/s00262-013-1451-5
doi: 10.1007/s00262-013-1451-5
pubmed: 23873089
Zhang R, Lyu C, Lu W, Pu Y, Jiang Y, Deng Q (2020) Synergistic effect of programmed death-1 inhibitor and programmed death-1 ligand-1 inhibitor combined with chemotherapeutic drugs on DLBCL cell lines in vitro and in vivo. Am J Cancer Res 10:2800–2812
pubmed: 33042618
pmcid: 7539778
Tanaka H, Matsushima H, Nishibu A, Clausen BE, Takashima A (2009) Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 69:6987–6994. https://doi.org/10.1158/0008-5472.Can-09-1106
doi: 10.1158/0008-5472.Can-09-1106
pubmed: 19706755
pmcid: 2737094