PD-1 blockade therapy augments the antitumor effects of lymphodepletion and adoptive T cell transfer.


Journal

Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732

Informations de publication

Date de publication:
Jun 2022
Historique:
received: 20 03 2021
accepted: 01 10 2021
pubmed: 18 10 2021
medline: 25 5 2022
entrez: 17 10 2021
Statut: ppublish

Résumé

Lymphodepleting cytotoxic regimens enhance the antitumor effects of adoptively transferred effector and naïve T cells. Although the mechanisms of antitumor immunity augmentation by lymphodepletion have been intensively investigated, the effects of lymphodepletion followed by T cell transfer on immune checkpoints in the tumor microenvironment remain unclear. The current study demonstrated that the expression of immune checkpoint molecules on transferred donor CD4

Identifiants

pubmed: 34657194
doi: 10.1007/s00262-021-03078-0
pii: 10.1007/s00262-021-03078-0
doi:

Substances chimiques

Programmed Cell Death 1 Receptor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1357-1369

Subventions

Organisme : Japan society for promotion of science
ID : 24591157

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Wang LX, Shu S, Plautz GE (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65:9547–9554. https://doi.org/10.1158/0008-5472.Can-05-1175
doi: 10.1158/0008-5472.Can-05-1175 pubmed: 16230420
North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074
doi: 10.1084/jem.155.4.1063
North RJ (1984) Gamma-irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells. Cancer Immunol Immunother: CII 16:175–181
doi: 10.1007/BF00205425
Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. https://doi.org/10.1038/nri3191
doi: 10.1038/nri3191 pubmed: 22437939 pmcid: 6292222
Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science (New York, N.Y.) 348:62–8. https://doi.org/10.1126/science.aaa4967
doi: 10.1126/science.aaa4967
Gauthier J, Bezerra ED, Hirayama AV et al (2020) Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B cell malignancies. Blood. https://doi.org/10.1182/blood.2020006770
doi: 10.1182/blood.2020006770 pubmed: 32076701 pmcid: 7205814
Baba J, Watanabe S, Saida Y et al (2012) Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood 120:2417–2427. https://doi.org/10.1182/blood-2012-02-411124
doi: 10.1182/blood-2012-02-411124 pubmed: 22806892
Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Investig 110:185–192. https://doi.org/10.1172/jci15175
doi: 10.1172/jci15175 pubmed: 12122110 pmcid: 151053
Watanabe S, Arita M, Takahashi M, Saida Y, Koya T, Kikuchi T (2017) Effect of lymphodepletion on donor T Cells and the role of recipient cells persisting after cytotoxic treatments in cancer immunotherapies. Crit Rev Immunol 37:59–73. https://doi.org/10.1615/CritRevImmunol.2018019497
doi: 10.1615/CritRevImmunol.2018019497 pubmed: 29431079
Gattinoni L, Finkelstein SE, Klebanoff CA et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+T cells. J Exp Med 202:907–912. https://doi.org/10.1084/jem.20050732
doi: 10.1084/jem.20050732 pubmed: 16203864 pmcid: 1397916
Klebanoff C, Khong H, Antony P, Palmer D, Restifo N (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117. https://doi.org/10.1016/j.it.2004.12.003
doi: 10.1016/j.it.2004.12.003 pubmed: 15668127 pmcid: 1388277
Kato K, Cho BC, Takahashi M et al (2019) Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20:1506–1517. https://doi.org/10.1016/s1470-2045(19)30626-6
doi: 10.1016/s1470-2045(19)30626-6 pubmed: 31582355
Kang YK, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England) 390:2461–2471. https://doi.org/10.1016/s0140-6736(17)31827-5
doi: 10.1016/s0140-6736(17)31827-5
Ferris RL, Blumenschein G Jr, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867. https://doi.org/10.1056/NEJMoa1602252
doi: 10.1056/NEJMoa1602252 pubmed: 27718784 pmcid: 5564292
Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. https://doi.org/10.1056/NEJMoa1507643
doi: 10.1056/NEJMoa1507643 pubmed: 26412456 pmcid: 5705936
Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. https://doi.org/10.1056/NEJMoa1504627
doi: 10.1056/NEJMoa1504627 pubmed: 26028407 pmcid: 4681400
Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082
doi: 10.1056/NEJMoa1412082 pubmed: 25399552
Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813. https://doi.org/10.1056/NEJMoa1510665
doi: 10.1056/NEJMoa1510665 pubmed: 26406148 pmcid: 5719487
Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092. https://doi.org/10.1056/NEJMoa1801005
doi: 10.1056/NEJMoa1801005 pubmed: 29658856
Sato H, Okonogi N, Nakano T (2020) Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 25:801–809. https://doi.org/10.1007/s10147-020-01666-1
doi: 10.1007/s10147-020-01666-1 pubmed: 32246277 pmcid: 7192886
Kawazoe A, Fukuoka S, Nakamura Y et al (2020) Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol 21:1057–1065. https://doi.org/10.1016/s1470-2045(20)30271-0
doi: 10.1016/s1470-2045(20)30271-0 pubmed: 32589866
McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495. https://doi.org/10.1146/annurev-immunol-041015-055318
doi: 10.1146/annurev-immunol-041015-055318 pubmed: 30676822
Shu SY, Rosenberg SA (1985) Adoptive immunotherapy of newly induced murine sarcomas. Cancer Res 45:1657–1662
pubmed: 3872168
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8. https://doi.org/10.1186/s40425-018-0316-z
doi: 10.1186/s40425-018-0316-z pubmed: 29357948 pmcid: 5778665
Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment. Cell Death Dis 6:e1792. https://doi.org/10.1038/cddis.2015.162
doi: 10.1038/cddis.2015.162 pubmed: 26086965 pmcid: 4669840
Crespo J, Sun H, Welling TH, Tian Z, Zou W (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 25:214–221. https://doi.org/10.1016/j.coi.2012.12.003
doi: 10.1016/j.coi.2012.12.003 pubmed: 23298609 pmcid: 3636159
Zarour HM (2016) Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res : An Off J Am Assoc Cancer Res 22:1856–1864. https://doi.org/10.1158/1078-0432.Ccr-15-1849
doi: 10.1158/1078-0432.Ccr-15-1849
Saida Y, Watanabe S, Tanaka T et al (2015) Critical roles of chemoresistant effector and regulatory T cells in antitumor immunity after lymphodepleting chemotherapy. J Immunol 195:726–735. https://doi.org/10.4049/jimmunol.1401468
doi: 10.4049/jimmunol.1401468 pubmed: 26041539
Kansy BA, Concha-Benavente F, Srivastava RM et al (2017) PD-1 status in CD8(+) T cells associates with survival and Anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res 77:6353–6364. https://doi.org/10.1158/0008-5472.Can-16-3167
doi: 10.1158/0008-5472.Can-16-3167 pubmed: 28904066 pmcid: 5690836
Kurtulus S, Madi A, Escobar G et al (2019) Checkpoint blockade immunotherapy induces dynamic changes in PD-1(-)CD8(+) tumor-infiltrating T cells. Immunity 50:181–94.e6. https://doi.org/10.1016/j.immuni.2018.11.014
doi: 10.1016/j.immuni.2018.11.014 pubmed: 30635236 pmcid: 6336113
Ueha S, Yokochi S, Ishiwata Y et al (2015) Robust antitumor effects of combined anti-CD4-depleting antibody and anti-PD-1/PD-L1 immune checkpoint antibody treatment in mice. Cancer Immunol Res 3:631–640. https://doi.org/10.1158/2326-6066.Cir-14-0190
doi: 10.1158/2326-6066.Cir-14-0190 pubmed: 25711759
Hsu J, Hodgins JJ, Marathe M et al (2018) Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Investig 128:4654–4668. https://doi.org/10.1172/jci99317
doi: 10.1172/jci99317 pubmed: 30198904 pmcid: 6159991
Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.Cir-16-0297
doi: 10.1158/2326-6066.Cir-16-0297 pubmed: 28052991 pmcid: 5426480
Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, Shu S (2008) Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 181:3291–3300. https://doi.org/10.4049/jimmunol.181.5.3291
doi: 10.4049/jimmunol.181.5.3291 pubmed: 18714001
Tada K, Kitano S, Shoji H et al (2016) Pretreatment immune status correlates with progression-free survival in chemotherapy-treated metastatic colorectal cancer patients. Cancer Immunol Res 4:592–599. https://doi.org/10.1158/2326-6066.CIR-15-0298
doi: 10.1158/2326-6066.CIR-15-0298 pubmed: 27197061
Wang LX (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65:9547–9554. https://doi.org/10.1158/0008-5472.can-05-1175
doi: 10.1158/0008-5472.can-05-1175 pubmed: 16230420
Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215–233. https://doi.org/10.1038/nrd3626
doi: 10.1038/nrd3626 pubmed: 22301798
Chen G, Emens LA (2013) Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother: CII 62:203–216. https://doi.org/10.1007/s00262-012-1388-0
doi: 10.1007/s00262-012-1388-0 pubmed: 23389507
Thommen DS, Schumacher TN (2018) T Cell Dysfunction in cancer. Cancer Cell 33:547–562. https://doi.org/10.1016/j.ccell.2018.03.012
doi: 10.1016/j.ccell.2018.03.012 pubmed: 29634943 pmcid: 7116508
Kamada T, Togashi Y, Tay C et al (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116:9999–10008. https://doi.org/10.1073/pnas.1822001116
doi: 10.1073/pnas.1822001116 pubmed: 31028147 pmcid: 6525547
Serpico AF, Visconti R, Grieco D (2020) Exploiting immune-dependent effects of microtubule-targeting agents to improve efficacy and tolerability of cancer treatment. Cell Death Dis 11:361. https://doi.org/10.1038/s41419-020-2567-0
doi: 10.1038/s41419-020-2567-0 pubmed: 32398657 pmcid: 7217828
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39:74–88. https://doi.org/10.1016/j.immuni.2013.06.014
doi: 10.1016/j.immuni.2013.06.014 pubmed: 23890065
Jure-Kunkel M, Masters G, Girit E, Dito G, Lee F, Hunt JT, Humphrey R (2013) Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunol Immunother : CII 62:1533–1545. https://doi.org/10.1007/s00262-013-1451-5
doi: 10.1007/s00262-013-1451-5 pubmed: 23873089
Zhang R, Lyu C, Lu W, Pu Y, Jiang Y, Deng Q (2020) Synergistic effect of programmed death-1 inhibitor and programmed death-1 ligand-1 inhibitor combined with chemotherapeutic drugs on DLBCL cell lines in vitro and in vivo. Am J Cancer Res 10:2800–2812
pubmed: 33042618 pmcid: 7539778
Tanaka H, Matsushima H, Nishibu A, Clausen BE, Takashima A (2009) Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 69:6987–6994. https://doi.org/10.1158/0008-5472.Can-09-1106
doi: 10.1158/0008-5472.Can-09-1106 pubmed: 19706755 pmcid: 2737094

Auteurs

Miho Takahashi (M)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Satoshi Watanabe (S)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan. satoshi7@med.niigata-u.ac.jp.

Ryo Suzuki (R)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Masashi Arita (M)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Ko Sato (K)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Miyuki Sato (M)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Yuki Sekiya (Y)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Yuko Abe (Y)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Toshiya Fujisaki (T)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Aya Ohtsubo (A)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Satoshi Shoji (S)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Koichiro Nozaki (K)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Kosuke Ichikawa (K)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Rie Kondo (R)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Yu Saida (Y)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Satoshi Hokari (S)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Nobumasa Aoki (N)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Masachika Hayashi (M)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Yasuyoshi Ohshima (Y)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Toshiyuki Koya (T)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Toshiaki Kikuchi (T)

Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH