Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence.
APOBEC Deaminases
/ genetics
Adult
Aged
Aged, 80 and over
Aldehyde Dehydrogenase, Mitochondrial
/ genetics
Brazil
/ epidemiology
China
/ epidemiology
Esophageal Neoplasms
/ epidemiology
Esophageal Squamous Cell Carcinoma
/ epidemiology
Female
Humans
Incidence
Iran
/ epidemiology
Male
Middle Aged
Mutation
Tumor Suppressor Protein p53
/ genetics
United Kingdom
/ epidemiology
Whole Genome Sequencing
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
16
12
2020
accepted:
28
07
2021
pubmed:
20
10
2021
medline:
28
12
2021
entrez:
19
10
2021
Statut:
ppublish
Résumé
Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.
Identifiants
pubmed: 34663923
doi: 10.1038/s41588-021-00928-6
pii: 10.1038/s41588-021-00928-6
doi:
Substances chimiques
TP53 protein, human
0
Tumor Suppressor Protein p53
0
ALDH2 protein, human
EC 1.2.1.3
Aldehyde Dehydrogenase, Mitochondrial
EC 1.2.1.3
APOBEC Deaminases
EC 3.5.4.5
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1553-1563Subventions
Organisme : NCI NIH HHS
ID : R21 CA191965
Pays : United States
Organisme : Cancer Research UK
ID : RG81771/84119
Pays : United Kingdom
Organisme : Cancer Research UK
ID : C98/A24032
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 206194
Pays : United Kingdom
Organisme : Medical Research Council
ID : RG84369
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
pubmed: 30207593
doi: 10.3322/caac.21492
Arnold, M., Soerjomataram, I., Ferlay, J. & Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 64, 381–387 (2015).
pubmed: 25320104
doi: 10.1136/gutjnl-2014-308124
Abnet, C. C., Arnold, M. & Wei, W. Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology 154, 360–373 (2018).
pubmed: 28823862
doi: 10.1053/j.gastro.2017.08.023
Murphy, G. et al. International cancer seminars: a focus on esophageal squamous cell carcinoma. Ann. Oncol. 28, 2086–2093 (2017).
pubmed: 28911061
pmcid: 5834011
doi: 10.1093/annonc/mdx279
Sheikh, M. et al. Individual and combined effects of environmental risk factors for esophageal cancer based on results from the Golestan Cohort Study. Gastroenterology 156, 1416–1427 (2019).
pubmed: 30611753
doi: 10.1053/j.gastro.2018.12.024
McCormack, V. A. et al. Informing etiologic research priorities for squamous cell esophageal cancer in Africa: a review of setting-specific exposures to known and putative risk factors. Int. J. Cancer 140, 259–271 (2017).
pubmed: 27466161
doi: 10.1002/ijc.30292
Mello, F. W. et al. The synergistic effect of tobacco and alcohol consumption on oral squamous cell carcinoma: a systematic review and meta-analysis. Clin. Oral Investig. 23, 2849–2859 (2019).
pubmed: 31111280
doi: 10.1007/s00784-019-02958-1
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
pmcid: 7054213
doi: 10.1038/s41586-020-1943-3
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).
pubmed: 26551669
pmcid: 4783858
doi: 10.1038/ng.3441
Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).
pubmed: 27811275
pmcid: 6141049
doi: 10.1126/science.aag0299
Riva, L. et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat. Genet. 52, 1189–1197 (2020).
pubmed: 32989322
pmcid: 7610456
doi: 10.1038/s41588-020-0692-4
Scelo, G. et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 5, 5135 (2014).
pubmed: 25351205
doi: 10.1038/ncomms6135
Gao, Y. B. et al. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet. 46, 1097–1102 (2014).
pubmed: 25151357
doi: 10.1038/ng.3076
Song, Y. et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 508, 91–95 (2014).
doi: 10.1038/nature13176
Zhang, L. et al. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am. J. Hum. Genet. 96, 597–611 (2015).
pubmed: 25839328
pmcid: 4385186
doi: 10.1016/j.ajhg.2015.02.017
Sawada, G. et al. Genomic landscape of esophageal squamous cell carcinoma in a Japanese population. Gastroenterology 150, 1171–1182 (2016).
pubmed: 26873401
doi: 10.1053/j.gastro.2016.01.035
Kim, J. et al. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–174 (2017).
doi: 10.1038/nature20805
Chang, J. et al. Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations. Nat. Commun. 8, 15290 (2017).
Li, X. C. et al. A mutational signature associated with alcohol consumption and prognostically significantly mutated driver genes in esophageal squamous cell carcinoma. Ann. Oncol. 29, 938–944 (2018).
pubmed: 29351612
pmcid: 5913594
doi: 10.1093/annonc/mdy011
Mangalaparthi, K. K. et al. Mutational landscape of esophageal squamous cell carcinoma in an Indian cohort. Front. Oncol. 10, 1457 (2020).
pubmed: 32974170
pmcid: 7469928
doi: 10.3389/fonc.2020.01457
Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Preprint at bioRxiv https://doi.org/10.1101/2020.12.13.422570 (2020).
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017).
pubmed: 29056346
pmcid: 5720395
doi: 10.1016/j.cell.2017.09.042
Middlebrooks, C. D. et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat. Genet. 48, 1330–1338 (2016).
pubmed: 27643540
pmcid: 6583788
doi: 10.1038/ng.3670
Nik-Zainal, S. et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat. Genet. 46, 487–491 (2014).
pubmed: 24728294
pmcid: 4137149
doi: 10.1038/ng.2955
Kidd, J. M., Newman, T. L., Tuzun, E., Kaul, R. & Eichler, E. E. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 3, e63 (2007).
Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245
doi: 10.1038/nature15393
MacGregor, S. et al. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum. Mol. Genet. 18, 580–593 (2009).
pubmed: 18996923
doi: 10.1093/hmg/ddn372
Cui, R. et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology 137, 1768–1775 (2009).
pubmed: 19698717
doi: 10.1053/j.gastro.2009.07.070
Wu, C. et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat. Genet. 43, 679–684 (2011).
pubmed: 21642993
doi: 10.1038/ng.849
Gao, Y. et al. Risk factors for esophageal and gastric cancers in Shanxi Province, China: a case–control study. Cancer Epidemiol. 35, e91–e99 (2011).
Akbari, M. R. et al. Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene 27, 1290–1296 (2008).
pubmed: 17724471
doi: 10.1038/sj.onc.1210739
Ko, J. M. Y. et al. BRCA2 loss-of-function germline mutations are associated with esophageal squamous cell carcinoma risk in Chinese. Int. J. Cancer 146, 1042–1051 (2020).
pubmed: 31396961
doi: 10.1002/ijc.32619
Deng, J. et al. Comparative genomic analysis of esophageal squamous cell carcinoma between Asian and Caucasian patient populations. Nat. Commun. 8, 1533 (2017).
pubmed: 29142225
pmcid: 5688099
doi: 10.1038/s41467-017-01730-x
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).
pubmed: 30337457
pmcid: 6298579
doi: 10.1126/science.aau3879
Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).
pubmed: 30602793
doi: 10.1038/s41586-018-0811-x
Liu, X. et al. Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma. Gastroenterology 153, 166–177 (2017).
pubmed: 28365443
doi: 10.1053/j.gastro.2017.03.033
Warnakulasuriya, S. et al. Carcinogenicity of opium consumption. Lancet Oncol. 21, 1407–1408 (2020).
doi: 10.1016/S1470-2045(20)30611-2
Balmain, A. The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat. Genet. 52, 1139–1143 (2020).
pubmed: 33106632
pmcid: 8360498
doi: 10.1038/s41588-020-00727-5
Bergmann, E. A., Chen, B. J., Arora, K., Vacic, V. & Zody, M. C. Conpair: concordance and contamination estimator for matched tumor–normal pairs. Bioinformatics 32, 3196–3198 (2016).
pubmed: 27354699
pmcid: 5048070
doi: 10.1093/bioinformatics/btw389
Jones, D. et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinformatics 2016, 15.10.1–15.10.18 (2016).
Raine, K. M. et al. cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr. Protoc. Bioinformatics 52, 15.7.1–15.7.12 (2015).
doi: 10.1002/0471250953.bi1507s52
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).
pubmed: 30013048
doi: 10.1038/s41592-018-0051-x
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019).
pubmed: 31470794
pmcid: 6717374
doi: 10.1186/s12864-019-6041-2
Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020).
pubmed: 32118208
pmcid: 7048622
doi: 10.1038/s43018-020-0027-5
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).
pubmed: 27135926
pmcid: 4910866
doi: 10.1038/nature17676
Senkin, S. MSA: reproducible mutational signature attribution with confidence based on simulations. Preprint at bioRxiv https://doi.org/10.1101/2020.12.14.422764 (2020).
Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364, eaaw2872 (2019).
pubmed: 31249028
pmcid: 6731024
doi: 10.1126/science.aaw2872
Bergstrom, E. N., Barnes, M., Martincorena, I. & Alexandrov, L. B. Generating realistic null hypothesis of cancer mutational landscapes using SigProfilerSimulator. BMC Bioinformatics 21, 438 (2020).
Mas-Ponte, D. & Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat. Genet. 52, 958–968 (2020).
pubmed: 32747826
pmcid: 7610516
doi: 10.1038/s41588-020-0674-6
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).
pubmed: 22608084
pmcid: 3414841
doi: 10.1016/j.cell.2012.04.024
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Nasrollahzadeh, D. et al. Opium, tobacco, and alcohol use in relation to oesophageal squamous cell carcinoma in a high-risk area of Iran. Br. J. Cancer 98, 1857–1863 (2008).
pubmed: 18475303
pmcid: 2410115
doi: 10.1038/sj.bjc.6604369