The influence of antineoplastic agents on the peri-implant bone around osseointegrated titanium implants: an in vivo histomorphometric and immunohistochemical study.
Antineoplastic agents
Bone implant interface
Cisplatin
Fluorouracil
Osseointegration
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
02
08
2021
accepted:
15
10
2021
pubmed:
24
10
2021
medline:
9
3
2022
entrez:
23
10
2021
Statut:
ppublish
Résumé
The interaction between antineoplastic drugs used for treating cancer and non-affected tissues remains poorly assessed and may be critical for maintaining the quality of life for patients during and after treatment. This pre-clinical study evaluated the effects of cisplatin (CIS) and 5-fluorouracil (5-FU) on the peri-implant repair process around osseointegrated titanium implants installed in the tibiae of rats. Were used 90 male rats, randomly divided into three groups (n = 30): physiological saline solution (PSS), CIS, and 5-FU. Titanium implants (4.0 × 2.2 mm) were inserted in both tibiae of all animals at day 0. The animals received either PSS, CIS, or 5-FU at 35 and 37 days. Euthanasia was performed at 50, 65, and 95 days after surgery. Histometric (bone/implant contact [BIC]) and bone area fraction occupancy (% BAFO), histological, and immunohistochemical (for bone morphogenetic protein 2/4 [BMP2/4], Runt-related transcription factor 2 [RUNX2], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analyses were performed. Data were statistically analyzed. Groups CIS and 5-FU presented lower BIC and lower BAFO as compared with PSS in all time points. The imbalance in bone turnover was observed by the lower number of BMP2/4-, RUNX2-, and OCN-positive cells/mm Both antineoplastic agents interfered negatively in the bone turnover around osseointegrated titanium implants. Closer and more careful follow-up of patients with osseointegrated implants that will undergo chemotherapy with either CIS or 5-FU shall be performed.
Sections du résumé
BACKGROUND AND OBJECTIVE
OBJECTIVE
The interaction between antineoplastic drugs used for treating cancer and non-affected tissues remains poorly assessed and may be critical for maintaining the quality of life for patients during and after treatment. This pre-clinical study evaluated the effects of cisplatin (CIS) and 5-fluorouracil (5-FU) on the peri-implant repair process around osseointegrated titanium implants installed in the tibiae of rats.
MATERIAL AND METHODS
METHODS
Were used 90 male rats, randomly divided into three groups (n = 30): physiological saline solution (PSS), CIS, and 5-FU. Titanium implants (4.0 × 2.2 mm) were inserted in both tibiae of all animals at day 0. The animals received either PSS, CIS, or 5-FU at 35 and 37 days. Euthanasia was performed at 50, 65, and 95 days after surgery. Histometric (bone/implant contact [BIC]) and bone area fraction occupancy (% BAFO), histological, and immunohistochemical (for bone morphogenetic protein 2/4 [BMP2/4], Runt-related transcription factor 2 [RUNX2], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analyses were performed. Data were statistically analyzed.
RESULTS
RESULTS
Groups CIS and 5-FU presented lower BIC and lower BAFO as compared with PSS in all time points. The imbalance in bone turnover was observed by the lower number of BMP2/4-, RUNX2-, and OCN-positive cells/mm
CONCLUSIONS
CONCLUSIONS
Both antineoplastic agents interfered negatively in the bone turnover around osseointegrated titanium implants.
CLINICAL RELEVANCE
CONCLUSIONS
Closer and more careful follow-up of patients with osseointegrated implants that will undergo chemotherapy with either CIS or 5-FU shall be performed.
Identifiants
pubmed: 34686918
doi: 10.1007/s00784-021-04239-2
pii: 10.1007/s00784-021-04239-2
doi:
Substances chimiques
Antineoplastic Agents
0
Dental Implants
0
Titanium
D1JT611TNE
Types de publication
Journal Article
Langues
eng
Pagination
2681-2692Subventions
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2017/11805-0
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2014/11427-8
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Smith LP, Ng M, Grubor D, Chandu A (2009) Outcomes of dental implants placed in a surgical training programme. Aust Dent J 54:361–367. https://doi.org/10.1111/j.1834-7819.2009.01163.x
doi: 10.1111/j.1834-7819.2009.01163.x
pubmed: 20415936
Melo MD, Shafie H, Obeid G (2006) Implant survival rates for oral and maxillofacial surgery residents: a retrospective clinical review with analysis of resident level of training on implant survival. J Oral Maxillofac Surg 64:1185–1189. https://doi.org/10.1016/j.joms.2006.04.014
doi: 10.1016/j.joms.2006.04.014
pubmed: 16860207
Cakarer S, Selvi F, Can T et al (2014) Investigation of the risk factors associated with the survival rate of dental implants. Implant Dent 23:328–333. https://doi.org/10.1097/ID.0000000000000079
doi: 10.1097/ID.0000000000000079
pubmed: 24776944
Aghaloo T, Pi-Anfruns J, Moshaverinia A, Sim D, Grogan T, Hadaya D (2019) The effects of systemic diseases and medications on implant osseointegration: a systematic review. Int J Oral Maxillofac Implants 34:s35–s49. https://doi.org/10.11607/jomi.19suppl.g3
doi: 10.11607/jomi.19suppl.g3
pubmed: 31116832
Monje A, Catena A, Borgnakke WS (2017) Association between diabetes mellitus/hyperglycaemia and peri-implant diseases: systematic review and meta-analysis. J Clin Periodontol 44:636–648. https://doi.org/10.1111/jcpe.12724
doi: 10.1111/jcpe.12724
pubmed: 28346753
Moraschini V, Ed Barboza (2016) Success of dental implants in smokers and non-smokers: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 45:205–215. https://doi.org/10.1016/j.ijom.2015.08.996
doi: 10.1016/j.ijom.2015.08.996
pubmed: 26385308
Lorch JH, Goloubeva O, Haddad RI, TAX 324 Study Group et al (2011) Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol 12:153–159. https://doi.org/10.1016/S1470-2045(10)70279-5
doi: 10.1016/S1470-2045(10)70279-5
pubmed: 21233014
pmcid: 4356902
Vermorken JB, Peyrade F, Krauss J et al (2014) Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilengitide in recurrent/metastatic squamous cell carcinoma of the head and neck: results of the randomized phase I/II ADVANTAGE trial (phase II part). Ann Oncol 25:682–688. https://doi.org/10.1093/annonc/mdu003
doi: 10.1093/annonc/mdu003
pubmed: 24567516
pmcid: 3933250
Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320. https://doi.org/10.1038/nrd1691
doi: 10.1038/nrd1691
pubmed: 15789122
van Kuilenburg AB, Meinsma R, Zonnenberg BA et al (2003) Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 9:4363–4367
pubmed: 14555507
Kim JW, Cha Y, Kim SJ et al (2012) Association of oral mucositis with quality of life and symptom clusters in patients with solid tumors receiving chemotherapy. Support Care Cancer 20:395–403. https://doi.org/10.1007/s00520-011-1126-8
doi: 10.1007/s00520-011-1126-8
pubmed: 21390568
Lalla RV, Bowen J, Barasch A et al (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy [published correction appears in Cancer. 2015 Apr 15;121:1339. 120:1453–1461. https://doi.org/10.1002/cncr.28592
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS (2000) Kapila YL (2021) Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 87:76–93. https://doi.org/10.1111/prd.12388
doi: 10.1111/prd.12388
Chang AM, Kantrong N (2000) Darveau RP (2021) Maintaining homeostatic control of periodontal epithelial tissue. Periodontol 86:188–200. https://doi.org/10.1111/prd.12369
doi: 10.1111/prd.12369
Dantas MVM, Verzola MHA, Sanitá PV, Dovigo LN, Cerri PS, Gabrielli MAC (2019) The influence of cisplatin-based chemotherapy on the osseointegration of dental implants: an in vivo mechanical and histometrical study. Clin Oral Implants Res 30:603–616. https://doi.org/10.1111/clr.13445
doi: 10.1111/clr.13445
pubmed: 31022308
Al-Mahalawy H, Marei HF, Abuohashish H, Alhawaj H, Alrefaee M, Al-Jandan B (2016) Effects of cisplatin chemotherapy on the osseointegration of titanium implants. J Craniomaxillofac Surg 44:337–346. https://doi.org/10.1016/j.jcms.2016.01.012
doi: 10.1016/j.jcms.2016.01.012
pubmed: 26895777
Matheus HR, Ervolino E, Faleiros PL et al (2018) Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: an in vivo study in rats. J Clin Periodontol 45:241–252. https://doi.org/10.1111/jcpe.12824
doi: 10.1111/jcpe.12824
pubmed: 28965362
World Health Organization. World Cancer Report 2014. Retrieved from http://www.who.int/mediacentre/factsheets/fs297/en/ [Acessed on: 18 June 2020]
Elani HW, Starr JR, Da Silva JD, Gallucci GO (2018) Trends in dental implant use in the U.S., 1999–2016, and Projections to 2026. J Dent Res 97:1424–1430. https://doi.org/10.1177/0022034518792567
doi: 10.1177/0022034518792567
pubmed: 30075090
pmcid: 6854267
Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1:60–68. https://doi.org/10.1097/00001665-199001000-00011
doi: 10.1097/00001665-199001000-00011
pubmed: 1965154
Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10. https://doi.org/10.22203/ecm.v013a01
doi: 10.22203/ecm.v013a01
pubmed: 17334975
Stadlinger B, Pourmand P, Locher MC, Schulz MC (2012) Systematic review of animal models for the study of implant integration, assessing the influence of material, surface and design. J Clin Periodontol 39(Suppl 12):28–36. https://doi.org/10.1111/j.1600-051X.2011.01835.x
doi: 10.1111/j.1600-051X.2011.01835.x
pubmed: 22533945
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412. https://doi.org/10.1371/journal.pbio.1000412
doi: 10.1371/journal.pbio.1000412
pubmed: 20613859
pmcid: 2893951
Gusman DJR, Ervolino E, Theodoro LH et al (2019) Antineoplastic agents exacerbate periodontal inflammation and aggravate experimental periodontitis. J Clin Periodontol 46:457–469. https://doi.org/10.1111/jcpe.13101
doi: 10.1111/jcpe.13101
pubmed: 30854670
Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311; discussion 312–3
Matheus HR, Matheus HR, Ervolino E, et al (2020) Association of hyaluronic acid with a deproteinized bovine graft improves bone repair and increases bone formation in critical-size bone defects [published online ahead of print, 2020 Nov 30]. J Periodontol. 2020; https://doi.org/10.1002/JPER.20-0613 . https://doi.org/10.1002/JPER.20-0613
Albrektsson T, Brånemark PI, Hansson HA, Lindström J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170. https://doi.org/10.3109/17453678108991776
doi: 10.3109/17453678108991776
pubmed: 7246093
Granato R, Bergamo ETP, Witek L et al (2020) Clinical, histological, and nanomechanical parameters of implants placed in healthy and metabolically compromised patients. J Dent 100:103436. https://doi.org/10.1016/j.jdent.2020.103436
doi: 10.1016/j.jdent.2020.103436
pubmed: 32738285
Thoma DS, Martin IS, Mühlemann S, Jung RE (2012) Systematic review of pre-clinical models assessing implant integration in locally compromised sites and/or systemically compromised animals. J Clin Periodontol 39(Suppl 12):37–62. https://doi.org/10.1111/j.1600-051X.2011.01833.x
doi: 10.1111/j.1600-051X.2011.01833.x
pubmed: 22533946
Terheyden H, Lang NP, Bierbaum S, Stadlinger B (2012) Osseointegration–communication of cells. Clin Oral Implants Res 23:1127–1135. https://doi.org/10.1111/j.1600-0501.2011.02327.x
doi: 10.1111/j.1600-0501.2011.02327.x
pubmed: 22092345
Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339:189–195. https://doi.org/10.1007/s00441-009-0832-8
doi: 10.1007/s00441-009-0832-8
pubmed: 19649655
Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Väänänen HK (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369. https://doi.org/10.1074/jbc.M314324200
doi: 10.1074/jbc.M314324200
pubmed: 14970229
Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88. https://doi.org/10.1615/critreveukargeneexpr.v19.i1.40
doi: 10.1615/critreveukargeneexpr.v19.i1.40
pubmed: 19191758
Kim J, Kim SK, Heo SJ, Koak JY (2019) Bone formation of titanium implant surfaces treated with submicron poly(lactide-co-glycolide)/recombinant human transforming growth factor- β2 particles by the electrospray method: an in vivo study. Int J Oral Maxillofac Implants 34:1404–1412. https://doi.org/10.11607/jomi.7296
doi: 10.11607/jomi.7296
pubmed: 31711082
Stine KC, Wahl EC, Liu L et al (2014) Cisplatin inhibits bone healing during distraction osteogenesis. J Orthop Res 32:464–470. https://doi.org/10.1002/jor.22527
doi: 10.1002/jor.22527
pubmed: 24259375
Morcuende JA, Gomez P, Stack J et al (2004) Effect of chemotherapy on segmental bone healing enhanced by rhBMP-2. Iowa Orthop J 24:36–42
pubmed: 15296204
pmcid: 1888415
Xian CJ, Howarth GS, Cool JC, Foster BK (2004) Effects of acute 5-fluorouracil chemotherapy and insulin-like growth factor-I pretreatment on growth plate cartilage and metaphyseal bone in rats. Bone 35:739–749. https://doi.org/10.1016/j.bone.2004.04.027
doi: 10.1016/j.bone.2004.04.027
pubmed: 15336611
Xian CJ, Cool JC, Pyragius T, Foster BK (2006) Damage and recovery of the bone growth mechanism in young rats following 5-fluorouracil acute chemotherapy. J Cell Biochem 99:1688–1704. https://doi.org/10.1002/jcb.20889
doi: 10.1002/jcb.20889
pubmed: 16888818
Raghu Nadhanan R, Abimosleh SM, Su YW, Scherer MA, Howarth GS, Xian CJ (2012) Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss. Am J Physiol Endocrinol Metab 302:E1440–E1449. https://doi.org/10.1152/ajpendo.00587.2011
doi: 10.1152/ajpendo.00587.2011
pubmed: 22436700
Albrektsson T, Johansson C (1991) Quantified bone tissue reactions to various metallic materials with reference to the so-called osseointegration concept. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 357–363
Insua A, Monje A, Wang HL, Miron RJ (2017) Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A 105(7):2075–2089. https://doi.org/10.1002/jbm.a.36060
doi: 10.1002/jbm.a.36060
pubmed: 28281321
Gietema JA, Meinardi MT, Messerschmidt J et al (2000) Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet 355:1075–1076. https://doi.org/10.1016/s0140-6736(00)02044-4
doi: 10.1016/s0140-6736(00)02044-4
pubmed: 10744098
Sonis ST, Elting LS, Keefe D et al (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100(9 Suppl):1995–2025. https://doi.org/10.1002/cncr.20162
doi: 10.1002/cncr.20162
pubmed: 15108222
Lewallen EA, Riester SM, Bonin CA et al (2015) Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev 21(2):218–230. https://doi.org/10.1089/ten.TEB.2014.0333
doi: 10.1089/ten.TEB.2014.0333
pubmed: 25348836