Clinical and neuroimaging findings in patients with lissencephaly/subcortical band heterotopia spectrum: a magnetic resonance conventional and diffusion tensor study.
Corticospinal tract
Diffusion tensor imaging
Lissencephaly
Subcortical band heterotopia
Journal
Neuroradiology
ISSN: 1432-1920
Titre abrégé: Neuroradiology
Pays: Germany
ID NLM: 1302751
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
03
06
2021
accepted:
13
10
2021
pubmed:
26
10
2021
medline:
12
3
2022
entrez:
25
10
2021
Statut:
ppublish
Résumé
To clarify brain abnormalities on magnetic resonance imaging (MRI) and its clinical implications in lissencephaly/subcortical band heterotopia (LIS/SBH) spectrum patients. The clinical severity and classification according to Di Donato were retrospectively reviewed in 23 LIS/SBH spectrum patients. The morphological and signal abnormalities of the brainstem, corpus callosum, and basal ganglia were also assessed. The brainstem distribution pattern of the corticospinal tract (CST) was analyzed by diffusion tensor imaging (DTI) and categorized into two types: normal pattern, in which the CST and medial lemniscus (ML) are separated by the dorsal portion of the transverse pontine fiber, and the abnormal pattern, in which the CST and ML are juxtaposed on the dorsal portion of a single transverse pontine fiber. Correlations between MR grading score and potential additional malformative findings of the brain and clinical symptoms were investigated. All patients with grade 3 (n = 5) showed brainstem deformities, signal abnormalities of pontine surface and had a tendency of basal ganglia deformity and callosal hypoplasia whereas those abnormalities were rarely seen in patients with grade 1 and 2 (n = 18). For DTI analysis, the patients with grade 3 LIS/SBH had typically abnormal CST, whereas the patients with grade 1 and 2 LIS/SBH had normal CST. The classification was well correlated with CST and brainstem abnormalities and clinical severity. MR assessment including DTI analysis may be useful in assessing the clinical severity in LIS/BH spectrum and may provide insight into its developmental pathology.
Identifiants
pubmed: 34693484
doi: 10.1007/s00234-021-02836-2
pii: 10.1007/s00234-021-02836-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
825-836Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Dobyns WB (2010) The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 51(Suppl 1):5–9
doi: 10.1111/j.1528-1167.2009.02433.x
des Portes V, Francis F, Pinard JM, Desguerre I, Moutard ML, Snoeck I, Meiners LC, Capron F, Cusmai R, Ricci S, Motte J, Echenne B, Ponsot G, Dulac O, Chelly J, Beldjord C (1998) Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum Mol Genet 7(7):1063-1070
Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92(1):63–72
doi: 10.1016/S0092-8674(00)80899-5
Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721
doi: 10.1038/364717a0
Dobyns WB, Truwit CL (1995) Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics 26(3):132–147
doi: 10.1055/s-2007-979744
Di Donato N, Timms AE, Aldinger KA, Mirzaa GM, Bennett JT, Collins S, Olds C, Mei D, Chiari S, Carvill G, Myers CT, Riviere JB, Zaki MS, University of Washington Center for Mendelian G, Gleeson JG, Rump A, Conti V, Parrini E, Ross ME, Ledbetter DH, Guerrini R, Dobyns WB (2018) Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet Med 20(11):1354-1364.
Kolbjer S, Martin DA, Pettersson M, Dahlin M, Anderlid BM (2021) Lissencephaly in an epilepsy cohort: molecular, radiological and clinical aspects. Eur J Paediatr Neurol 30:71–81
doi: 10.1016/j.ejpn.2020.12.011
Di Donato N, Chiari S, Mirzaa GM, Aldinger K, Parrini E, Olds C, Barkovich AJ, Guerrini R, Dobyns WB (2017) Lissencephaly: expanded imaging and clinical classification. Am J Med Genet A 173(6):1473–1488
doi: 10.1002/ajmg.a.38245
Doherty D, Millen KJ, Barkovich AJ (2013) Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 12(4):381–393
doi: 10.1016/S1474-4422(13)70024-3
Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132(Pt 12):3199–3230
doi: 10.1093/brain/awp247
Jissendi-Tchofo P, Kara S, Barkovich AJ (2009) Midbrain-hindbrain involvement in lissencephalies. Neurology 72(5):410–418
doi: 10.1212/01.wnl.0000333256.74903.94
Arrigoni F, Romaniello R, Peruzzo D, Poretti A, Bassi MT, Pierpaoli C, Valente EM, Nuovo S, Boltshauser E, Huisman T, Triulzi F, Borgatti R (2019) The spectrum of brainstem malformations associated to mutations of the tubulin genes family: MRI and DTI analysis. Eur Radiol 29(2):770–782
doi: 10.1007/s00330-018-5610-0
Dobyns WB, Aldinger KA, Ishak GE, Mirzaa GM, Timms AE, Grout ME, Dremmen MHG, Schot R, Vandervore L, van Slegtenhorst MA, Wilke M, Kasteleijn E, Lee AS, Barry BJ, Chao KR, Szczaluba K, Kobori J, Hanson-Kahn A, Bernstein JA, Carr L, D'Arco F, Miyana K, Okazaki T, Saito Y, Sasaki M, Das S, Wheeler MM, Bamshad MJ, Nickerson DA, University of Washington Center for Mendelian G, Center for Mendelian Genomics at the Broad Institute of MIT, Harvard, Engle EC, Verheijen FW, Doherty D, Mancini GMS (2018) MACF1 mutations encoding highly conserved zinc-binding residues of the GAR domain cause defects in neuronal migration and axon guidance. Am J Hum Genet 103(6):1009-1021.
Arrigoni F, Peruzzo D, Mandelstam S, Amorosino G, Redaelli D, Romaniello R, Leventer R, Borgatti R, Seal M, Yang JY (2020) Characterizing white matter tract organization in polymicrogyria and lissencephaly: a multifiber diffusion MRI modeling and tractography study. AJNR Am J Neuroradiol 41(8):1495–1502
doi: 10.3174/ajnr.A6646
Poretti A, Meoded A, Rossi A, Raybaud C, Huisman TA (2013) Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 43(1):28–54
doi: 10.1007/s00247-012-2428-9
Rollins NK, Booth TN, Chahrour MH (2017) Variability of ponto-cerebellar fibers by diffusion tensor imaging in diverse brain malformations. J Child Neurol 32(3):271–285
doi: 10.1177/0883073816680734
Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, Lagae L, Moshé SL, Peltola J, Roulet Perez E, Scheffer IE, Zuberi SM (2017) Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):522–530
doi: 10.1111/epi.13670
Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230(1):77–87
doi: 10.1148/radiol.2301021640
Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458
doi: 10.1038/bmt.2012.244
ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251(12):1429–1442
doi: 10.1007/s00415-004-0653-3
O’Leary DD, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10(6):991–1006
doi: 10.1016/0896-6273(93)90049-W
Crome L (1956) Pachygyria. J Pathol Bacteriol 71(2):335–352
doi: 10.1002/path.1700710208
Jellinger K, Rett A (1976) Agyria-pachygyria (lissencephaly syndrome). Neuropadiatrie 7(1):66–91
doi: 10.1055/s-0028-1091611
Brock S, Cools F, Jansen AC (2021) Neuropathology of genetically defined malformations of cortical development-a systematic literature review. Neuropathol Appl Neurobiol 47(5):585–602
doi: 10.1111/nan.12696
Forman MS, Squier W, Dobyns WB, Golden JA (2005) Genotypically defined lissencephalies show distinct pathologies. J Neuropathol Exp Neurol 64(10):847–857
doi: 10.1097/01.jnen.0000182978.56612.41
Plantier V, Watrin F, Buhler E, Martineau FS, Sahu S, Manent JB, Bureau I, Represa A (2019) Direct and collateral alterations of functional cortical circuits in a rat model of subcortical band heterotopia. Cereb Cortex 29(10):4253–4262
doi: 10.1093/cercor/bhy307
Welniarz Q, Dusart I, Roze E (2017) The corticospinal tract: evolution, development, and human disorders. Dev Neurobiol 77(7):810–829
doi: 10.1002/dneu.22455
Heffner CD, Lumsden AG, O’Leary DD (1990) Target control of collateral extension and directional axon growth in the mammalian brain. Science 247(4939):217–220
doi: 10.1126/science.2294603
Hirasawa-Inoue A, Sato N, Shigemoto Y, Kimura Y, Ishiyama A, Takeshita E, Mori-Yoshimura M, Oya Y, Takahashi Y, Komaki H, Matsuda H, Sasaki M (2020) New MRI findings in Fukuyama congenital muscular dystrophy: brain stem and venous system anomalies. AJNR Am J Neuroradiol 41(6):1094–1098
doi: 10.3174/ajnr.A6577
Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A (2020) Definitions and classification of malformations of cortical development: practical guidelines. Brain 143(10):2874–2894
doi: 10.1093/brain/awaa174
Devisme L, Bouchet C, Gonzalès M, Alanio E, Bazin A, Bessières B, Bigi N, Blanchet P, Bonneau D, Bonnières M, Bucourt M, Carles D, Clarisse B, Delahaye S, Fallet-Bianco C, Figarella-Branger D, Gaillard D, Gasser B, Delezoide AL, Guimiot F, Joubert M, Laurent N, Laquerrière A, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S, Pelluard F, Perez MJ, Rouleau C, Triau S, Attié-Bitach T, Vuillaumier-Barrot S, Seta N, Encha-Razavi F (2012) Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 135(Pt 2):469–482
doi: 10.1093/brain/awr357
Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type - clinical, genetic and pathological considerations. Brain Dev 3(1):1–29
doi: 10.1016/S0387-7604(81)80002-2