Venatorbacter cucullus gen. nov sp. nov a novel bacterial predator.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 11 2021
Historique:
received: 28 02 2020
accepted: 13 10 2021
entrez: 2 11 2021
pubmed: 3 11 2021
medline: 27 1 2022
Statut: epublish

Résumé

A novel Gram-stain negative, aerobic, halotolerant, motile, rod-shaped, predatory bacterium ASxL5

Identifiants

pubmed: 34725408
doi: 10.1038/s41598-021-00865-8
pii: 10.1038/s41598-021-00865-8
pmc: PMC8560859
doi:

Substances chimiques

RNA, Ribosomal, 16S 0
Waste Products 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

21393

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/I024585/1
Pays : United Kingdom

Informations de copyright

© 2021. The Author(s).

Références

Pérez, J., Moraleda-Muñoz, A., Marcos-Torres, F. J. & Muñoz-Dorado, J. Bacterial predation: 75 years and counting!. Environ. Microbiol. 18, 766–779 (2016).
pubmed: 26663201 doi: 10.1111/1462-2920.13171
Linares-Otoya, L. et al. Diversity and antimicrobial potential of predatory bacteria from the Peruvian coastline. Mar. Drugs. 15, E308. https://doi.org/10.3390/md15100308 (2017).
doi: 10.3390/md15100308 pubmed: 29023396
Pasternak, Z. et al. By their genes ye shall know them: Genomic signatures of predatory bacteria. ISME J. 7, 756–769 (2013).
pubmed: 23190728 doi: 10.1038/ismej.2012.149
Sockett, R. E. Predatory lifestyle of Bdellovibrio bacteriovorus. Ann. Rev. Microbiol. 63, 523–539 (2009).
doi: 10.1146/annurev.micro.091208.073346
Korp, J., Vela Gurovic, M. S. & Nett, M. Antibiotics from predatory bacteria. Beilstein J. Org. Chem. 12, 594–607 (2016).
pubmed: 27340451 pmcid: 4902038 doi: 10.3762/bjoc.12.58
Johnke, J., Fraune, S., Bosch, T. C. G., Hentschel, U. & Schulenburg, H. Bdellovibrio and like organisms are predictors of microbiome diversity in distinct host groups. Microb. Ecol. 79, 252–257 (2020).
pubmed: 31187177 doi: 10.1007/s00248-019-01395-7
Vila, J., Moreno-Morales, J. & Ballesté-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2019.09.015 (2019).
doi: 10.1016/j.cmi.2019.09.015 pubmed: 31574341
Hobley, L. et al. Dual predation by bacteriophage and Bdellovibrio bacteriovorus can eradicate Escherichia coli prey in situations where single predation cannot. J. Bacteriol. 202, e00629-19. https://doi.org/10.1128/JB.00629-19 (2020).
doi: 10.1128/JB.00629-19 pubmed: 31907203 pmcid: 7043672
El-Shibiny, A., Connerton, P. L. & Connerton, I. F. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. Environ. Microbiol. 71, 1259–1266 (2005).
pubmed: 15746327 pmcid: 1065130 doi: 10.1128/AEM.71.3.1259-1266.2005
Wilkinson, D. A. et al. Updating the genomic taxonomy and epidemiology of Campylobacter hyointestinalis. Sci. Rep. 8, 2393. https://doi.org/10.1038/s41598-018-20889-x (2018).
doi: 10.1038/s41598-018-20889-x pubmed: 29403020 pmcid: 5799301
Lee, M. D. GToTree: A user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).
pubmed: 30865266 pmcid: 6792077 doi: 10.1093/bioinformatics/btz188
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 10, e1002195 (2011).
doi: 10.1371/journal.pcbi.1002195
Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).
doi: 10.1186/1471-2105-5-113
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
pubmed: 19505945 pmcid: 2712344 doi: 10.1093/bioinformatics/btp348
Hyatt, D., LoCascio, P. F., Hauser, L. J. & Uberbacher, E. C. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28, 2223–2230 (2012).
pubmed: 22796954 doi: 10.1093/bioinformatics/bts429
Shen, W. & Xiong, J. TaxonKit: A cross-platform and efficient NCBI taxonomy toolkit. bioRxiv. (Accessed 1 June 2021); https://www.biorxiv.org/content/10.1101/513523v1 (2019).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).
pubmed: 20224823 pmcid: 2835736 doi: 10.1371/journal.pone.0009490
Tange, O. GNU Parallel. (Accessed 1 June 2021); https://zenodo.org/record/1146014#.YOHaiJhKiUk (2018).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Czech, L. et al. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: Genetics, phylogenomics, biochemistry, and structural Analysis. Genes (Basel). 9, E177. https://doi.org/10.3390/genes9040177 (2018).
doi: 10.3390/genes9040177 pubmed: 29565833
Gregson, B. H., Metodieva, G., Metodiev, M. V., Golyshin, P. N. & McKew, B. A. Differential protein expression during growth on medium versus long-chain alkanes in the obligate marine hydrocarbon-degrading bacterium Thalassolituus oleivorans MIL-1. Front. Microbiol. 9, 3130 (2018).
pubmed: 30619200 pmcid: 6304351 doi: 10.3389/fmicb.2018.03130
Pasternak, Z., Ben Sasson, T., Cohen, Y., Segev, E. & Jurkevitch, E. A new comparative-genomics approach for defining phenotype-specific indicators reveals specific genetic markers in predatory bacteria. PLoS One. 10, e0142933. https://doi.org/10.1371/journal.pone.0142933 (2015).
doi: 10.1371/journal.pone.0142933 pubmed: 26569499 pmcid: 4646340
Yakimov, M. M. et al. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 54, 141–148 (2004).
pubmed: 14742471 doi: 10.1099/ijs.0.02424-0
Wang, Y., Yu, M., Liu, Y., Yang, X. & Zhang, X. H. Bacterioplanoides pacificum gen. nov., sp. nov., isolated from seawater of South Pacific Gyre. Int. J. Syst. Evol. Microbiol. 66, 5010–5015 (2016).
pubmed: 27566052 doi: 10.1099/ijsem.0.001461
Bowditch, R. D., Baumann, L. & Baumann, P. Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr. Microbiol. 10, 221–229 (1984).
doi: 10.1007/BF01627259
Dong, C., Chen, X., Xie, Y., Lai, Q. & Shao, Z. Complete genome sequence of Thalassolituus oleivorans R6-15, an obligate hydrocarbonoclastic marine bacterium from the Arctic Ocean. Stand Genom. Sci. 9, 893–901 (2014).
doi: 10.4056/sigs.5229330
Choi, A. & Cho, J.-C. Thalassolituus marinus sp. nov., a hydrocarbon utilizing marine bacterium. Int. J. Syst. Evol. Microbiol. 63, 2234–2238 (2013).
pubmed: 23148102 doi: 10.1099/ijs.0.046383-0
Alain, K., Harder, J., Widdel, F. & Zengler, K. Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. Microbiology 158, 2946–2957 (2012).
pubmed: 23038808 doi: 10.1099/mic.0.061598-0
Liu, J., Wu, W., Chen, C., Sun, F. & Chen, Y. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl. Microbiol. Biotechnol. 91, 1659–1675 (2011).
pubmed: 21637937 doi: 10.1007/s00253-011-3354-8
Yakimov, M. M., Timmis, K. N. & Golyshin, P. N. Obligate oil-degrading marine bacteria. Curr. Opin. Biotechnol. 18, 257–266 (2007).
pubmed: 17493798 doi: 10.1016/j.copbio.2007.04.006
McKew, B. A. et al. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ. Microbiol. 9, 1562–1571 (2007).
pubmed: 17504493 doi: 10.1111/j.1462-2920.2007.01277.x
Satomi, M., Kimura, B., Hamada, T., Harayama, S. & Fujii, T. Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. no. Int. J. Syst. Evol. Microbiol. 52, 739–747 (2002).
pubmed: 12054233
Qin, Q. L. et al. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210–2215 (2014).
pubmed: 24706738 pmcid: 4054180 doi: 10.1128/JB.01688-14
Nicholson, A. C. et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int. J. Syst. Evol. Microbiol. 70, 4432–4450 (2020).
pubmed: 32735208 pmcid: 7660247 doi: 10.1099/ijsem.0.003935
Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).
pubmed: 25118885 doi: 10.1038/nrmicro3330
Barco, R. A. et al. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. MBio 11, e02475-192020. https://doi.org/10.1128/mBio.02475-19 (2020).
doi: 10.1128/mBio.02475-19
Andersson, J. O. & Andersson, S. G. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).
pubmed: 10607609 doi: 10.1016/S0959-437X(99)00024-6
Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).
pubmed: 10216854 doi: 10.1046/j.1365-2958.1999.01339.x
Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Ann. Rev. Genet. 40, 385–407 (2006).
pubmed: 16895465 doi: 10.1146/annurev.genet.40.110405.090423
Dow, J. M., Fouhy, Y., Lucey, J. F. & Ryan, R. P. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol. Plant Microbe Interact. 19, 1378–1384 (2006).
pubmed: 17153922 doi: 10.1094/MPMI-19-1378
Hobley, L. et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 8, e1002493. https://doi.org/10.1371/journal.ppat.1002493 (2012).
doi: 10.1371/journal.ppat.1002493 pubmed: 22319440 pmcid: 3271064
Seccareccia, I., Kovács, Á. T., Gallegos-Monterrosa, R. & Nett, M. Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis. Microbiol. Res. 192, 231–238 (2016).
pubmed: 27664741 doi: 10.1016/j.micres.2016.07.007
Mu, D. S. et al. Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments. Microbiome 8, 1262020 (2020).
doi: 10.1186/s40168-020-00902-0
Zepeda, V. K. et al. Terasakiispira papahanaumokuakeensis gen. nov., sp. nov., a gammaproteobacterium from Pearl and Hermes Atoll, Northwestern Hawaiian Islands. Int. J. Syst. Evol. Microbiol. 65, 3609–3617 (2015).
pubmed: 26297573 doi: 10.1099/ijsem.0.000438
Terasaki, Y. Transfer of five species and two subspecies of Spirillum to other genera (Aquaspirillum and Oceanospirillum), with emended descriptions of the species and subspecies. Int. J. Syst. Evol. Microbiol. 29, 130–144 (1979).
Baker, D. A. & Park, R. W. Changes in morphology and cell wall structure that occur during growth of Vibrio sp. NCTC4716 in batch culture. J. Gen. Microbiol. 86, 12–28 (1975).
pubmed: 803546 doi: 10.1099/00221287-86-1-12
Ng, L. K., Sherburne, R., Taylor, D. E. & Stiles, M. E. Morphological forms and viability of Campylobacter species studied by electron microscopy. J. Bacteriol. 164, 338–343 (1985).
pubmed: 4044525 pmcid: 214249 doi: 10.1128/jb.164.1.338-343.1985
Reshetnyak, V. I. & Reshetnyak, T. M. Significance of dormant forms of Helicobacter pylori in ulcerogenesis. World J. Gastroenterol. 23, 4867–4878 (2017).
pubmed: 28785141 pmcid: 5526757 doi: 10.3748/wjg.v23.i27.4867
Loc Carrillo, C. et al. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71, 6554–6563 (2005).
pubmed: 16269681 pmcid: 1287621 doi: 10.1128/AEM.71.11.6554-6563.2005
Clinical and Laboratory Standards Institute. Methods for determining bactericidal activity of antimicrobial agents; approved guideline M26-A. Clin. Lab. Stand. Inst. 19, 7 (1999).
Legat, A., Gruber, C., Zangger, K., Wanner, G. & Stan-Lotter, H. Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl. Microbiol. Biotechnol. 87, 1119–1127 (2010).
pubmed: 20437233 pmcid: 2895300 doi: 10.1007/s00253-010-2611-6
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).
pubmed: 8336541
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).
pubmed: 28561359 doi: 10.2307/2408678
Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species. Microbe 9, 111–118 (2014).
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
pubmed: 28460117 pmcid: 5850834 doi: 10.1093/molbev/msx148

Auteurs

Ahmed Saeedi (A)

Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

Nicola J Cummings (NJ)

Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

Denise McLean (D)

Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD, UK.

Ian F Connerton (IF)

Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. ian.connerton@nottingham.ac.uk.

Phillippa L Connerton (PL)

Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH