Food reward induction of rhythmic clock gene expression in the prefrontal cortex of rats is accompanied by changes in miR-34a-5p expression.
circadian
dgcr8
dicer
dopamine
drosha
per2
Journal
The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
27
10
2021
received:
15
04
2021
accepted:
28
10
2021
pubmed:
5
11
2021
medline:
25
11
2021
entrez:
4
11
2021
Statut:
ppublish
Résumé
The current study is focused on mechanisms by which the peripheral circadian oscillator in the prefrontal cortex (PFC) participates in food reward-induced activity. The experimental group of male Wistar rats was trained to receive a food reward with a low hedonic and caloric value. Afterwards, animals were exposed to a 5 h phase advance. Experimental animals could access a small food reward as they had been accustomed to, while control rats were exposed to the same phase shift without access to a food reward. When synchronisation to a new light:dark cycle was accompanied by intake of food reward, animals exerted more exact phase shift compared to the controls. In rats with access to a food reward, a rhythm in dopamine receptors types 1 and 2 in the PFC was detected. Rhythmic clock gene expression was induced in the PFC of rats when a food reward was provided together with a phase shift. The per2 and clock genes are predicted targets of miR-34a-5p. The precursor form of miR-34a-5p (pre-miR-34a-5p) showed a daily rhythm in expression in the PFC of the control and experimental groups. On the other hand, the mature form of miR-34a-5p exerted an inverted rhythm compared to pre-miR-34a-5p and negative correlation with per and clock genes expression only in the PFC of rewarded rats. A difference in the pattern of mature and pre-miR-34a-5p values was not related to expression of enzymes drosha, dicer and dgcr8. A role of the clock genes and miR-34a-5p in reward-facilitated synchronisation has been hypothesised.
Substances chimiques
MicroRNAs
0
RNA-Binding Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7476-7492Informations de copyright
© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Références
Akhisaroglu, M., Kurtuncu, M., Manev, H., & Uz, T. (2005). Diurnal rhythms in quinpirole-induced locomotorbehaviors and striatal D2/D3 receptor levels in mice. Pharmacology Biochemistry and Behavior, 80(3), 371-377. https://doi.org/10.1016/j.pbb.2004.11.016
Aksoy-Aksel, A., Zampa, F., & Schratt, G. (2014). MicroRNAs and synaptic plasticity-A mutual relationship. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1652), 20130515. https://doi.org/10.1098/rstb.2013.0515
Angeles-Castellanos, M., Salgado-Delgado, R., Rodríguez, K., Buijs, R. M., & Escobar, C. (2008). Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward. Neuroscience, 155(1), 297-307. https://doi.org/10.1016/j.neuroscience.2008.06.001
Aston-Jones, G., Smith, R. J., Moorman, D. E., & Richardson, K. A. (2009). Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 56(Suppl 1), 112-121. https://doi.org/10.1016/j.neuropharm.2008.06.060
Balcells, I., Cirera, S., & Busk, P. K. (2011). Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnology, 11, 70. https://doi.org/10.1186/1472-6750-11-70
Bendová, Z., Pačesová, D., & Novotný, J. (2020). The day-night differences in ERK1/2, GSK3βactivity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. The Journal of Comparative Neurology, 528(14), 2471-2495. https://doi.org/10.1002/cne.24906
Berentsen, B., Patil, S., Rønnestad, K., Goff, K. M., Pajak, M., Simpson, T. I., Wibrand, K., & Bramham, C. R. (2020). MicroRNA-34a acutely regulates synaptic efficacy in the adult dentate gyrus In vivo. Molecular Neurobiology, 57(3), 1432-1445. https://doi.org/10.1007/s12035-019-01816-1
Bertolucci, C., Cavallari, N., Colognesi, I., Aguzzi, J., Chen, Z., Caruso, P., Foá, A., Tosini, G., Bernardi, F., & Pinotti, M. (2008). Evidence for an overlapping role of CLOCK andNPAS2 transcription factors in liver circadian oscillators. Molecular and Cellular Biology, 28(9), 3070-3075. https://doi.org/10.1128/MCB.01931-07
Challet, E. (2019). The circadian regulation of food intake. Nature Reviews. Endocrinology, 15(7), 393-405. https://doi.org/10.1038/s41574-019-0210-x
Chua, C. E. L., & Tang, B. L. (2019). miR-34a in neurophysiology and neuropathology. Journal of Molecular Neuroscience, 67(2), 235-246. https://doi.org/10.1007/s12031-018-1231-y
Chun, L. E., Woodruff, E. R., Morton, S., Hinds, L. R., & Spencer, R. L. (2015). Variations in phase and amplitude of rhythmic clock gene expression across prefrontal cortex, hippocampus, amygdala, and hypothalamic paraventricular and suprachiasmatic nuclei of male and female rats. Journal of Biological Rhythms, 30(5), 417-436. https://doi.org/10.1177/0748730415598608
Cole, S., Keefer, S. E., Anderson, L. C., & Petrovich, G. D. (2020). Medial prefrontal Cortex neural plasticity, orexin receptor 1 signaling, and connectivity with the lateral hypothalamus are necessary in cue-potentiated feeding. The Journal of Neuroscience, 40(8), 1744-1755. https://doi.org/10.1523/JNEUROSCI.1803-19.2020
Cooper, S., Robison, A. J., & Mazei-Robison, M. S. (2017). Reward circuitry in addiction. Neurotherapeutics, 14(3), 687-697. https://doi.org/10.1007/s13311-017-0525-z
Crumbley, C., & Burris, T. P. (2011). Direct regulation of CLOCK expression by REV-ERB. PLoS ONE, 6(3), e17290. https://doi.org/10.1371/journal.pone.0017290
Damiola, F., le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes & Development, 14(23), 2950-2961. https://doi.org/10.1101/gad.183500
DeBruyne, J. P., Weaver, D. R., & Reppert, S. M. (2007). CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nature Neuroscience, 10(5), 543-545. https://doi.org/10.1038/nn1884
del Arco, A., & Mora, F. (2008). Prefrontal cortex-nucleus accumbens interaction: In vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacology Biochemistry and Behavior, 90(2), 226-235. https://doi.org/10.1016/j.pbb.2008.04.011
Dreos, R., Ambrosini, G., Groux, R., CavinPérier, R., & Bucher, P. (2017). The eukaryotic promoter database in its 30th year: Focus on non-vertebrate organisms. Nucleic Acids Research, 45(D1), D51-D55. https://doi.org/10.1093/nar/gkw1069
Du, N. H., Arpat, A. B., de Matos, M., & Gatfield, D. (2014). MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. Elife, 3, e02510. https://doi.org/10.7554/eLife.02510
Duclot, F., & Kabbaj, M. (2017). The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Frontiers in Behavioral Neuroscience, 11, 35. https://doi.org/10.3389/fnbeh.2017.00035
Escobar, C., Espitia-Bautista, E., Guzmán-Ruiz, M. A., Guerrero-Vargas, N. N., Hernández-Navarrete, M. Á., Ángeles-Castellanos, M., Morales-Pérez, B., & Buijs, R. M. (2020). Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work. Scientific Reports, 10(1), 6243. https://doi.org/10.1038/s41598-020-63227-w
Fadel, J., & Deutch, A. Y. (2002). Anatomical substrates of orexin-dopamine interactions: Lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111(2), 379-387. https://doi.org/10.1016/S0306-4522(02)00017-9
Feillet, C. A., Bainier, C., Mateo, M., Blancas-Velázquez, A., Salaberry, N. L., Ripperger, J. A., Albrecht, U., & Mendoza, J. (2017). Rev-erbα modulates the hypothalamic orexinergic system to influence pleasurable feeding behaviour in mice. Addiction Biology, 22(2), 411-422. https://doi.org/10.1111/adb.12339
Ford, C. P. (2014). The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience, 282, 13-22. https://doi.org/10.1016/j.neuroscience.2014.01.025
Froy, O. (2010). Metabolism and circadian rhythms-Implications for obesity. Endocrine Reviews, 31(1), 1-24. https://doi.org/10.1210/er.2009-0014
Fuster, J. M. (2015). The prefrontal cortex (fifth ed.) (pp. 1-444). Elsevier.
Gal-Ben-Ari, S., Kenney, J. W., Ounalla-Saad, H., Taha, E., David, O., Levitan, D., Gildish, I., Panja, D., Pai, B., Wibrand, K., Simpson, T. I., Proud, C. G., Bramham, C. R., Armstrong, J. D., & Rosenblum, K. (2012). Consolidation and translation regulation. Learning & Memory, 19(9), 410-422. https://doi.org/10.1101/lm.026849.112
Gallardo, C. M., Darvas, M., Oviatt, M., Chang, C. H., Michalik, M., Huddy, T. F., Meyer, E. E., Shuster, S. A., Aguayo, A., Hill, E. M., Kiani, K., Ikpeazu, J., Martinez, J. S., Purpura, M., Smit, A. N., Patton, D. F., Mistlberger, R. E., Palmiter, R. D., & Steele, A. D. (2014). Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. eLife, 3, e03781. https://doi.org/10.7554/eLife.03781
Griffin, P., Sheehan, P. W., Dimitry, J. M., Guo, C., Kanan, M. F., Lee, J., Zhang, J., & Musiek, E. S. (2020). REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. eLife, 9, e58765. https://doi.org/10.7554/eLife.58765
Grippo, R. M., & Güler, A. D. (2019). Dopamine signaling in circadian photoentrainment: Consequences of desynchrony. The Yale Journal of Biology and Medicine, 92(2), 271-281.
Grippo, R. M., Purohit, A. M., Zhang, Q., Zweifel, L. S., & Güler, A. D. (2017). Direct midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian entrainment. Current Biology, 27(16), 2465-2475.e3.
Haque, R., Ali, F. G., Biscoglia, R., Abey, J., Weller, J., Klein, D., & Iuvone, P. M. (2010). CLOCK andNPAS2 have overlapping roles in the circadian oscillation of arylalkylamine N-acetyltransferase mRNA in chicken cone photoreceptors. Journal of Neurochemistry, 113(5), 1296-1306. https://doi.org/10.1111/j.1471-4159.2010.06698.x
Hasakova, K., Reis, R., Vician, M., Zeman, M., & Herichova, I. (2019). Expression of miR-34a-5pis up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS ONE, 14(10), e0224396. https://doi.org/10.1371/journal.pone.0224396
Herichová, I., Hasáková, K., Lukáčová, D., Mravec, B., & Horváthová, Ľ. (2017). KavickáD. Prefrontal cortex and dorsomedial hypothalamus mediate food reward-induce deffects via npas2 and egr1 expression in rat. Physiological Research, 66(Suppl4), S501-S510. https://doi.org/10.33549/physiolres.933799
Herichová I, Lukáčová D, Hasáková K. Effect of food reward administered during different phases of LD cycle on entrainment and clock and clock controlled genes in nucleus arcuatus and prefrontal cortex. Proceeding of Biological Time Keeping, LXXXV Cold Spring Harbor Symposium on Quantitative Biology, 1.-5.6., 2021 p. 104.
Herichová, I., Šoltésová, D., Szántóová, K., Mravec, B., Neupauerová, D., Veselá, A., & Zeman, M. (2013). Effect of angiotensin II on rhythmic per2 expression in the suprachiasmatic nucleus and heart and daily rhythm of activity in Wistar rats. Regulatory Peptides, 186, 49-56. https://doi.org/10.1016/j.regpep.2013.06.016
Honma, S. (2018). The mammalian circadian system: A hierarchical multi-oscillator structure for generating circadian rhythm. The Journal of Physiological Sciences, 68(3), 207-219. https://doi.org/10.1007/s12576-018-0597-5
Hood, S., Cassidy, P., Cossette, M. P., Weigl, Y., Verwey, M., Robinson, B., Stewart, J., & Amir, S. (2010). Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. The Journal of Neuroscience, 30(42), 14046-14058. https://doi.org/10.1523/JNEUROSCI.2128-10.2010
Horvath, T. L., Peyron, C., Diano, S., Ivanov, A., Aston-Jones, G., Kilduff, T. S., & van den Pol, A. N. (1999). Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. The Journal of Comparative Neurology, 415(2), 145-159. https://doi.org/10.1002/(SICI)1096-9861(19991213)415:2%3C145::AID-CNE1%3E3.0.CO;2-2
Hu, Y., Pei, W., Hu, Y., Li, P., Sun, C., Du, J., Zhang, Y., Miao, F., Zhang, A., Shen, Y., & Zhang, J. (2020). MiR34a Regulates Neuronal MHC Class I Molecules and Promotes Primary Hippocampal Neuron Dendritic Growth and Branching. Frontiers in Cellular Neuroscience, 14, 573208. https://doi.org/10.3389/fncel.2020.573208
Huang, H., Ghosh, P., & van den Pol, A. N. (2006). Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: A feed forward circuit that may enhance cognitive arousal. Journal of Neurophysiology, 95(3), 1656-1668. https://doi.org/10.1152/jn.00927.2005
Izquierdo, A. (2017). Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. The Journal of Neuroscience, 37(44), 10529-10540. https://doi.org/10.1523/JNEUROSCI.1678-17.2017
Jauhari, A., & Yadav, S. (2019). MiR-34 and MiR-200: Regulator of cell fate plasticity and neural development. Neuromolecular Medicine, 21(2), 97-109. https://doi.org/10.1007/s12017-019-08535-9
Kesner, R. P., & Churchwell, J. C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiology of Learning and Memory, 96(3), 417-431. https://doi.org/10.1016/j.nlm.2011.07.002
Kim, M., de la Peña, J. B., Cheong, J. H., & Kim, H. J. (2018). Neurobiological functions of the period Circadian clock 2 gene, Per2. Biomolecules & Therapeutics (Seoul)., 26(4), 358-367. https://doi.org/10.4062/biomolther.2017.131
Kinoshita, C., Okamoto, Y., Aoyama, K., & Nakaki, T. (2020). MicroRNA: A key player for the interplay of circadian rhythm abnormalities, sleep disorders and neurodegenerative diseases. Clocks Sleep., 2(3), 282-307. https://doi.org/10.3390/clockssleep2030022
Kita, H., & Oomura, Y. (1981). Reciprocal connections between the lateral hypothalamus and the frontal complex in the rat: Electrophysiological and anatomical observations. Brain Research, 213(1), 1-16. https://doi.org/10.1016/0006-8993(81)91244-0
Klemfuss, H., & Clopton, P. L. (1993). Seeking tau: A comparison of six methods. Journal of Interdisciplinary Cycle Research, 24, 1-16. https://doi.org/10.1080/09291019309360191
Koob, G. F., Arends, M. A., & Moal, M. L. E. (2014). Drugs, addiction, and the brain (pp. 1-350). Elsevier.
Lee, Y., Lee, J., Kwon, I., Nakajima, Y., Ohmiya, Y., Son, G. H., Lee, K. H., & Kim, K. (2010). Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of thecircadian clock. Journal of Cell Science, 123(Pt 20), 3547-3557. https://doi.org/10.1242/jcs.070300
Li, G. F., Li, Z. B., Zhuang, S. J., & Li, G. C. (2018). Inhibition of microRNA-34a protects against propofolanesthesia-induced neurotoxicity and cognitive dysfunction via the MAPK/ERK signaling pathway. Neuroscience Letters, 675, 152-159. https://doi.org/10.1016/j.neulet.2018.03.052
Lu, S., Mukkada, V. A., Mangray, S., Cleveland, K., Shillingford, N., Schorl, C., Brodsky, A. S., & Resnick, M. B. (2012). MicroRNA profiling in mucosal biopsies of eosinophilicesophagitis patients pre and post treatment with steroids and relationship with mRNA targets. PLoS One, 7(7), e40676.
Luo, A. H., & Aston-Jones, G. (2009). Circuit projection from suprachiasmatic nucleus to ventral tegmental area: A novel circadian output pathway. The European Journal of Neuroscience, 29(4), 748-760. https://doi.org/10.1111/j.1460-9568.2008.06606.x
Marchant, E. G., Watson, N. V., & Mistlberger, R. E. (1997). Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. The Journal of Neuroscience, 17(20), 7974-7987. https://doi.org/10.1523/JNEUROSCI.17-20-07974.1997
Mendoza, J. (2019). Eating rewards the gears of the clock. Trends in Endocrinology and Metabolism, 30(5), 299-311. https://doi.org/10.1016/j.tem.2019.03.001
Mendoza, J., Clesse, D., Pévet, P., & Challet, E. (2010). Food-reward signalling in the suprachiasmatic clock. Journal of Neurochemistry, 112(6), 1489-1499. https://doi.org/10.1111/j.1471-4159.2010.06570.x
Mollinari, C., Racaniello, M., Berry, A., Pieri, M., de Stefano, M. C., Cardinale, A., Zona, C., Cirulli, F., Garaci, E., & Merlo, D. (2015). miR-34a regulates cell proliferation, morphology and function of newborn neurons resulting in improved behavioural outcomes. Cell Death and Disease, 6(1), e1622.
Nelson, W., Tong, Y. L., Lee, J. K., & Halberg, F. (1979). Methods for cosinor-rhythmometry. Chronobiologia, 6, 305-323.
O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology (Lausanne), 9, 402.
Otsuka, T., Thi Le, H., Kohsaka, A., Sato, F., Ihara, H., Nakao, T., & Maeda, M. (2020). Adverse effects of circadian disorganization on mood and molecular rhythms in the prefrontal Cortex of mice. Neuroscience, 432, 44-54. https://doi.org/10.1016/j.neuroscience.2020.02.013
Parekh, P. K., Ozburn, A. R., & McClung, C. A. (2015). Circadian clock genes: Effects on dopamine, reward and addiction. Alcohol, 49(4), 341-349. https://doi.org/10.1016/j.alcohol.2014.09.034
Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35(1), 192-216. https://doi.org/10.1038/npp.2009.104
Refinetti, R. (2016). Circadian physiology (3rd ed.) (p. 688). CRC Press.
Reick, M., Garcia, J. A., Dudley, C., & McKnight, S. L. (2001). NPAS2: An analog of clock operative in the mammalian forebrain. Science, 293(5529), 506-509. https://doi.org/10.1126/science.1060699
Reith, M. E., Xu, C., & Chen, N. H. (1997). Pharmacology and regulation of the neuronal dopamine transporter. European Journal of Pharmacology, 324(1), 1-10. https://doi.org/10.1016/S0014-2999(97)00065-4
Senko, T., Olexova, L., Mokosakova, M., & Kršková, L. (2017). Angiotensin II enhancement during pregnancy influences the emotionality of rat offspring (Rattus norvegicus) in adulthood. Potential use of the rat grimace scale. Neuroendocrinology Letters, 38(2), 117-123.
Soltésová, D., Monošíková, J., Koyšová, L., Veselá, A., Mravec, B., & Herichová, I. (2013). Effect of streptozotocin-induced diabetes on clock gene expression in tissues inside and outside the blood-brain barrier in rat. Experimental and Clinical Endocrinology & Diabetes, 121(8), 466-474. https://doi.org/10.1055/s-0033-1349123
Sotocinal, S. G., Sorge, R. E., Zaloum, A., Tuttle, A. H., Martin, L. J., Wieskopf, J. S., Mapplebeck, J. C., Wei, P., Zhan, S., Zhang, S., McDougall, J. J., King, O. D., & Mogil, J. S. (2011). The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Molecular Pain, 7, 55. https://doi.org/10.1186/1744-8069-7-55
Sylvester, C. M., Krout, K. E., & Loewy, A. D. (2002). Suprachiasmatic nucleus projection to the medial prefrontal cortex: A viral transneuronal tracing study. Neuroscience, 114(4), 1071-1080. https://doi.org/10.1016/S0306-4522(02)00361-5
Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., Meister, G., & Hermeking, H. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586-1593. https://doi.org/10.4161/cc.6.13.4436
Travnickova-Bendova, Z., Cermakian, N., Reppert, S. M., & Sassone-Corsi, P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1activity. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7728-7733. https://doi.org/10.1073/pnas.102075599
Vujovic, N., Gooley, J. J., Jhou, T. C., & Saper, C. B. (2015). Projections from the subparaventricular zone define four channels of output from the circadian timing system. The Journal of Comparative Neurology, 523(18), 2714-2737. https://doi.org/10.1002/cne.23812
Wang, D. Q., Wang, X. L., Wang, C. Y., Wang, Y., Li, S. X., & Liu, K. Z. (2019). Effects of chronic cocaine exposure on the circadian rhythmic expression of the clock genes in reward-related brain areas in rats. Behavioural Brain Research, 363, 61-69. https://doi.org/10.1016/j.bbr.2019.01.035
Wibrand, K., Pai, B., Siripornmongcolchai, T., Bittins, M., Berentsen, B., Ofte, M. L., Weigel, A., Skaftnesmo, K. O., & Bramham, C. R. (2012). MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS ONE, 7(7), e41688. https://doi.org/10.1371/journal.pone.0041688
Wibrand, K., Panja, D., Tiron, A., Ofte, M. L., Skaftnesmo, K. O., Lee, C. S., Pena, J. T., Tuschl, T., & Bramham, C. R. (2010). Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. The European Journal of Neuroscience, 31(4), 636-645. https://doi.org/10.1111/j.1460-9568.2010.07112.x
Wu, J., Gao, M., Shen, J. X., Shi, W. X., Oster, A. M., & Gutkin, B. S. (2013). Cortical control of VTA function and influence on nicotine reward. Biochemical Pharmacology, 86(8), 1173-1180. https://doi.org/10.1016/j.bcp.2013.07.013
Yamakuchi, M., & Lowenstein, C. J. (2009). MiR-34, SIRT1 and p53: The feedback loop. CellCycle, 8(715), 712-715.
Yan, Y., Salazar, T. E., Dominguez, J. M. 2nd, Nguyen, D. V., Li Calzi, S., Bhatwadekar, A. D., Qi, X., Busik, J. V., Boulton, M. E., & Grant, M. B. (2013). Dicer expression exhibits a tissue-specific diurnal pattern that is lost during aging and in diabetes. PLoS ONE, 8(11), e80029. https://doi.org/10.1371/journal.pone.0080029
Yang, H., de Jong, J. W., Tak, Y., Peck, J., Bateup, H. S., & Lammel, S. (2018). Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron, 97(2), 434-449.e4.
Yasumoto, Y., Hashimoto, C., Nakao, R., Yamazaki, H., Hiroyama, H., Nemoto, T., Yamamoto, S., Sakurai, M., Oike, H., Wada, N., Yoshida-Noro, C., & Oishi, K. (2016). Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism, 65(5), 714-727. https://doi.org/10.1016/j.metabol.2016.02.003
Zhang, H., & Bramham, C. R. (2021). Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues. European Journal of Neuroscience, 54(8), 6696-6712. https://doi.org/10.1111/ejn.14958
Zhang, L., Liao, Y., & Tang, L. (2019). MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 53. https://doi.org/10.1186/s13046-019-1059-5