MicroRNA-15a-5p acts as a tumor suppressor in histiocytosis by mediating CXCL10-ERK-LIN28a-let-7 axis.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
04 2022
Historique:
received: 20 04 2021
accepted: 04 11 2021
revised: 29 10 2021
pubmed: 18 11 2021
medline: 7 4 2022
entrez: 17 11 2021
Statut: ppublish

Résumé

Erdheim-Chester disease (ECD) is characterized by excessive production and accumulation of histiocytes within multiple tissues and organs. ECD patients harbor recurrent mutations of genes associated with the RAS/RAF/MEK/ERK signaling pathway, particularly, the BRAF

Identifiants

pubmed: 34785791
doi: 10.1038/s41375-021-01472-2
pii: 10.1038/s41375-021-01472-2
pmc: PMC8979810
mid: NIHMS1774205
doi:

Substances chimiques

CXCL10 protein, human 0
Chemokine CXCL10 0
MicroRNAs 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1139-1149

Subventions

Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA259260
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Goyal G, Heaney ML, Collin M, Cohen-Aubart F, Vaglio A, Durham BH, et al. Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood. 2020;135:1929–45.
pubmed: 32187362 doi: 10.1182/blood.2019003507
Janku F, Vibat CR, Kosco K, Holley VR, Cabrilo G, Meric-Bernstam F, et al. BRAF V600E mutations in urine and plasma cell-free DNA from patients with Erdheim-Chester disease. Oncotarget. 2014;5:3607–10.
pubmed: 25003820 pmcid: 4116506 doi: 10.18632/oncotarget.1964
Diamond EL, Durham BH, Haroche J, Yao Z, Ma J, Parikh SA, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Disco. 2016;6:154–65.
doi: 10.1158/2159-8290.CD-15-0913
Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373:726–36.
pubmed: 26287849 pmcid: 4971773 doi: 10.1056/NEJMoa1502309
Haroche J, Cohen-Aubart F, Emile JF, Maksud P, Drier A, Toledano D, et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol. 2015;33:411–8.
pubmed: 25422482 doi: 10.1200/JCO.2014.57.1950
Nordmann TM, Juengling FD, Recher M, Berger CT, Kalbermatten D, Wicki A, et al. Trametinib after disease reactivation under dabrafenib in Erdheim-Chester disease with both BRAF and KRAS mutations. Blood. 2017;129:879–82.
pubmed: 27940476 doi: 10.1182/blood-2016-09-740217
Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Disco. 2014;13:928–42.
doi: 10.1038/nrd4281
Mazor RD, Weissman R, Luckman J, Domachevsky L, Diamond EL, Abdel-Wahab O, et al. Dual BRAF/MEK blockade restores CNS responses in BRAF-mutant Erdheim-Chester disease patients following BRAF inhibitor monotherapy. Neurooncol Adv. 2020;2:vdaa024.
pubmed: 32642685 pmcid: 7212923
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.
pubmed: 29263891 pmcid: 5661652 doi: 10.1038/sigtrans.2015.4
Weissman R, Diamond EL, Haroche J, Pillar N, Shapira G, Durham BH, et al. The contribution of microRNAs to the inflammatory and neoplastic characteristics of Erdheim-Chester disease. Cancers. 2020;12:3240.
Chen D, Wu D, Shao K, Ye B, Huang J, Gao Y. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. Am J Transl Res. 2017;9:4308–16.
pubmed: 28979704 pmcid: 5622273
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev. 2015;26:311–27.
pubmed: 25498524 doi: 10.1016/j.cytogfr.2014.11.009
Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med. 1993;177:1809–14.
pubmed: 8496693 doi: 10.1084/jem.177.6.1809
Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (Review). Oncol Lett. 2011;2:583–9.
pubmed: 22848232 pmcid: 3406435 doi: 10.3892/ol.2011.300
Handa H, Murakami Y, Ishihara R, Kimura-Masuda K, Masuda Y. The role and function of microRNA in the pathogenesis of multiple myeloma. Cancers. 2019;11:1738.
Veronese A, Pepe F, Chiacchia J, Pagotto S, Lanuti P, Veschi S, et al. Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia. Leukemia. 2015;29:86–95.
pubmed: 24732594 doi: 10.1038/leu.2014.139
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.
pubmed: 12434020 pmcid: 137750 doi: 10.1073/pnas.242606799
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
Haroche J, Cohen-Aubart F, Charlotte F, Maksud P, Grenier PA, Cluzel P, et al. The histiocytosis Erdheim-Chester disease is an inflammatory myeloid neoplasm. Expert Rev Clin Immunol. 2015;11:1033–42.
pubmed: 26197238 doi: 10.1586/1744666X.2015.1060857
Milne P, Bigley V, Bacon CM, Neel A, McGovern N, Bomken S, et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood. 2017;130:167–75.
pubmed: 28512190 pmcid: 5524529 doi: 10.1182/blood-2016-12-757823
Durham BH, Roos-Weil D, Baillou C, Cohen-Aubart F, Yoshimi A, Miyara M, et al. Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. Blood. 2017;130:176–80.
pubmed: 28566492 pmcid: 5510787 doi: 10.1182/blood-2016-12-757377
Papo M, Diamond EL, Cohen-Aubart F, Emile JF, Roos-Weil D, Gupta N, et al. High prevalence of myeloid neoplasms in adults with non-Langerhans cell histiocytosis. Blood. 2017;130:1007–13.
pubmed: 28679734 pmcid: 5570678 doi: 10.1182/blood-2017-01-761718
Ghobadi A, Miller CA, Li T, O’Laughlin M, Lee YS, Ali M, et al. Shared cell of origin in a patient with Erdheim-Chester disease and acute myeloid leukemia. Haematologica. 2019;104:e373–e5.
pubmed: 30923101 pmcid: 6669153 doi: 10.3324/haematol.2019.217794
Cohen Aubart F, Roos-Weil D, Armand M, Marceau-Renaut A, Emile JF, Duployez N, et al. High frequency of clonal hematopoiesis in Erdheim-Chester disease. Blood. 2021;137:485–92.
Lovat F, Nigita G, Distefano R, Nakamura T, Gasparini P, Tomasello L, et al. Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA. 2020;117:12332–40.
pubmed: 32424097 pmcid: 7275703 doi: 10.1073/pnas.2003597117
Maru SV, Holloway KA, Flynn G, Lancashire CL, Loughlin AJ, Male DK, et al. Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J Neuroimmunol. 2008;199:35–45.
pubmed: 18538864 doi: 10.1016/j.jneuroim.2008.04.029
Datta D, Flaxenburg JA, Laxmanan S, Geehan C, Grimm M, Waaga-Gasser AM, et al. Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: relevance for the development of human breast cancer. Cancer Res. 2006;66:9509–18.
pubmed: 17018607 doi: 10.1158/0008-5472.CAN-05-4345
Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB. et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106:4519–24.
pubmed: 19251651 pmcid: 2649208 doi: 10.1073/pnas.0900780106
Tsanov KM, Pearson DS, Wu Z, Han A, Triboulet R, Seligson MT, et al. LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency. Nat Cell Biol. 2017;19:60–7.
pubmed: 27992407 doi: 10.1038/ncb3453
Stoppacciaro A, Ferrarini M, Salmaggi C, Colarossi C, Praderio L, Tresoldi M, et al. Immunohistochemical evidence of a cytokine and chemokine network in three patients with Erdheim-Chester disease: implications for pathogenesis. Arthritis Rheum. 2006;54:4018–22.
pubmed: 17133532 doi: 10.1002/art.22280
Dagna L, Girlanda S, Langheim S, Rizzo N, Bozzolo EP, Sabbadini MG, et al. Erdheim-Chester disease: report on a case and new insights on its immunopathogenesis. Rheumatology. 2010;49:1203–6.
pubmed: 20097905 doi: 10.1093/rheumatology/kep461
Tamura K, Kanazawa T, Tsukada S, Kobayashi T, Kawamura M, Morikawa A. Increased serum monocyte chemoattractant protein-1, macrophage inflammatory protein-1beta, and interleukin-8 concentrations in hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2008;51:662–8.
pubmed: 18623207 doi: 10.1002/pbc.21660
Arnaud L, Gorochov G, Charlotte F, Lvovschi V, Parizot C, Larsen M, et al. Systemic perturbation of cytokine and chemokine networks in Erdheim-Chester disease: a single-center series of 37 patients. Blood. 2011;117:2783–90.
pubmed: 21205927 doi: 10.1182/blood-2010-10-313510
Pacini G, Cavalli G, Tomelleri A, De Luca G, Pacini G, Ferrarini M, et al. The fibrogenic chemokine CCL18 is associated with disease severity in Erdheim-Chester disease. Oncoimmunology. 2018;7:e1440929.
pubmed: 29900045 pmcid: 5993512 doi: 10.1080/2162402X.2018.1440929
Berres ML, Lim KP, Peters T, Price J, Takizawa H, Salmon H, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211:669–83.
pubmed: 24638167 pmcid: 3978272 doi: 10.1084/jem.20130977
Allen CE, Li L, Peters TL, Leung HC, Yu A, Man TK, et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J Immunol. 2010;184:4557–67.
pubmed: 20220088 doi: 10.4049/jimmunol.0902336
Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci. 2019;110:1140–7.
pubmed: 30729639 pmcid: 6447849 doi: 10.1111/cas.13965
Liu Z, Cheng C, Luo X, Xia Q, Zhang Y, Long X, et al. CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in nasopharyngeal carcinoma. BMC Cancer. 2016;16:238.
pubmed: 26993269 pmcid: 4797221 doi: 10.1186/s12885-016-2277-2
Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY, et al. Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res. 2012;31:27.
pubmed: 22449094 pmcid: 3325897 doi: 10.1186/1756-9966-31-27
Tian X, Zhang J, Yan L, Dong JM, Guo Q. MiRNA-15a inhibits proliferation, migration and invasion by targeting TNFAIP1 in human osteosarcoma cells. Int J Clin Exp Pathol. 2015;8:6442–9.
pubmed: 26261520 pmcid: 4525854
Janaki Ramaiah M, Lavanya A, Honarpisheh M, Zarea M, Bhadra U, Bhadra MP. MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells. Gene. 2014;552:255–64.
pubmed: 25261849 doi: 10.1016/j.gene.2014.09.052
Gianfreda D, Nicastro M, Galetti M, Alberici F, Corradi D, Becchi G, et al. Sirolimus plus prednisone for Erdheim-Chester disease: an open-label trial. Blood. 2015;126:1163–71.
pubmed: 26041743 doi: 10.1182/blood-2015-01-620377
Pegoraro F, Maniscalco V, Peyronel F, Westenend PJ, Hendriksz TR, Roperto RM, et al. Long-term follow-up of mTOR inhibition for Erdheim-Chester disease. Blood. 2020;135:1994–7.
pubmed: 32299103 doi: 10.1182/blood.2019004478
Lovat F, Fassan M, Sacchi D, Ranganathan P, Palamarchuk A, Bill M, et al. Knockout of both miR-15/16 loci induces acute myeloid leukemia. Proc Natl Acad Sci USA. 2018;115:13069–74.
pubmed: 30478046 pmcid: 6304943 doi: 10.1073/pnas.1814980115
Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, Barashi N, et al. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/16-1-mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. 2018;78:1471–83.
pubmed: 29259008 doi: 10.1158/0008-5472.CAN-17-0454
Liu XF, Wang RQ, Hu B, Luo MC, Zeng QM, Zhou H, et al. MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10. Clin Immunol. 2016;164:106–13.
pubmed: 26845678 doi: 10.1016/j.clim.2015.12.009
Berti A, Cavalli G, Guglielmi B, Biavasco R, Campochiaro C, Tomelleri A, et al. Tocilizumab in patients with multisystem Erdheim-Chester disease. Oncoimmunology. 2017;6:e1318237.
pubmed: 28680751 pmcid: 5486186 doi: 10.1080/2162402X.2017.1318237

Auteurs

Ran Weissman (R)

Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel.

Eli L Diamond (EL)

Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Julien Haroche (J)

Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France.

Benjamin H Durham (BH)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Fleur Cohen (F)

Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France.

Justin Buthorn (J)

Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Zahir Amoura (Z)

Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France.

Jean-François Emile (JF)

Research Unit EA4340, Versailles University, Paris-Saclay University, Boulogne, France.
Pathology Department, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France.

Roei D Mazor (RD)

Institute of Hematology/Clinic of Histiocytic Neoplasms, Assuta Medical Centers, Tel-Aviv, Israel.

Noam Shomron (N)

Faculty of Medicine and Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.

Omar I Abdel-Wahab (OI)

Research Unit EA4340, Versailles University, Paris-Saclay University, Boulogne, France.

Ofer Shpilberg (O)

Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel.
Institute of Hematology/Clinic of Histiocytic Neoplasms, Assuta Medical Centers, Tel-Aviv, Israel.
Adelson School of Medicine, Ariel University, Ariel, Israel.

Oshrat Hershkovitz-Rokah (O)

Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel. oshratr@assuta.co.il.
Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel. oshratr@assuta.co.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH