A mutation in the neonatal isoform of SCN2A causes neonatal-onset epilepsy.


Journal

American journal of medical genetics. Part A
ISSN: 1552-4833
Titre abrégé: Am J Med Genet A
Pays: United States
ID NLM: 101235741

Informations de publication

Date de publication:
03 2022
Historique:
revised: 11 10 2021
received: 13 02 2021
accepted: 22 10 2021
pubmed: 8 12 2021
medline: 19 4 2022
entrez: 7 12 2021
Statut: ppublish

Résumé

SCN2A (sodium channel 2A) encodes the Nav1.2 channel protein in excitatory neurons in the brain. Nav1.2 is a critical voltage-gated sodium channel of the central nervous system. Mutations in SCN2A are responsible for a broad phenotypic spectrum ranging from autism and developmental delay to severe encephalopathy with neonatal or early infantile onset. SCN2A can be spliced into two different isoforms, a neonatal (6N) and an adult (6A) form. After birth, there is an equal or higher amount of the 6N isoform, protecting the brain from the increased neuronal excitability of the infantile brain. During postnatal development, 6N is gradually replaced by 6A. In an infant carrying the novel SCN2A mutation c.643G > A (p.Ala215Thr) only in the neonatal transcript, seizures started immediately after birth. The clinical presentation evolved from a burst-suppression pattern with 30-50 tonic seizures per day to hypsarrhythmia. The first exome analysis, focusing only on common transcripts, missed the diagnosis and delayed early therapy. A reevaluation including all transcripts revealed the SCN2A variant.

Identifiants

pubmed: 34874093
doi: 10.1002/ajmg.a.62581
doi:

Substances chimiques

NAV1.2 Voltage-Gated Sodium Channel 0
Protein Isoforms 0
SCN2A protein, human 0

Types de publication

Case Reports

Langues

eng

Sous-ensembles de citation

IM

Pagination

941-947

Informations de copyright

© 2021 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.

Références

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248-249. https://doi.org/10.1038/nmeth0410-248.A
Bamshad, M. J., Ng, S. B., Bigham, A. W., Tabor, H. K., Emond, M. J., Nickerson, D. A., & Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics, 12(11), 745-755. https://doi.org/10.1038/nrg3031
Ben-Shalom, R., & Bender, K. (2017). Opposing effects on NaV 1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biological Psychiatry, 82(3), 224-232. https://doi.org/10.1016/j.biopsych.2017.01.009.Opposing
Ben-Shalom, Roy. (2017). www.scn2a.org. Retrieved from https://public.tableau.com/profile/ucsf.psychiatry.bioinformatics.core#!/vizhome/SCN2AVariantViz6_0_0/Dashboard1
Bough, K. (2008). Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia, 49(2), 91-93. https://doi.org/10.1111/j.1528-1167.2008.01846.x
Catterall, W. A. (2000). From ionic currents to molecular review mechanisms: The structure and function of voltage-gated sodium channels. Neuron, 26, 13-25 Retrieved from https://www.cell.com/neuron/pdf/S0896-6273(00)81133-2.pdf
Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745-2747. https://doi.org/10.1093/bioinformatics/btv195
Eldomery, M. K., Coban-Akdemir, Z., Harel, T., Rosenfeld, J. A., Gambin, T., Stray-Pedersen, A., Küry, S., Mercier, S., Lessel, D., Denecke, J., Wiszniewski, W., Penney, S., Liu, P., Bi, W., Lalani, S. R., Schaaf, C. P., Wangler, M. F., Bacino, C. A., Lewis, R. A., … Lupski, J. R. (2017). Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Medicine, 9(1), 1-15. https://doi.org/10.1186/s13073-017-0412-6
Gustafson, T. A., Clevinger, E. C., Neill, T. J. O., Yarowskys, P. J., & Kruegerg, B. K. (1993). Mutually exclusive exon splicing of type III brain sodium channel a subunit RNA generates developmentally regulated isoforms in rat brain. The Journal of Biological Chemistry, 268(25), 18648-18653.
Hartman, A. L., Gasior, M., Vining, E. P. G., & Rogawski, M. A. (2007). The neuropharmacology of the ketogenic diet. Pediatric Neurology, 36(5), 281-292. https://doi.org/10.1016/j.pediatrneurol.2007.02.008
Herlenius, E., Heron, S. E., Grinton, B. E., Keay, D., Scheffer, I. E., Mulley, J. C., & Berkovic, S. F. (2007). SCN2A mutations and benign familial neonatal-infantile seizures: The phenotypic spectrum. Epilepsia, 48(6), 1138-1142. https://doi.org/10.1111/j.1528-1167.2007.01049.x
Huxley, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500-544. https://doi.org/10.1109/ICCCT2.2017.7972284
Isom, L. L., De Jongh, K. S., & Catterall, W. A. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron, 12(6), 1183-1194. https://doi.org/10.1016/0896-6273(94)90436-7
Kamiya, K., Kaneda, M., Sugawara, T., Mazaki, E., Okamura, N., Montal, M., Makita, N., Tanaka, M., Fukushima, K., Fujiwara, T., Inoue, Y., & Yamakawa, K. (2004). A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. Journal of Neuroscience, 24(11), 2690-2698. https://doi.org/10.1523/JNEUROSCI.3089-03.2004
Kasai, N., Fukushima, K., Ueki, Y., Prasad, S., Nosakowski, J., Sugata, K. I., Sugata, A., Nishizaki, K., Meyer, N. C., & Smith, R. J. H. (2001). Genomic structures of SCN2A and SCN3A - candidate genes for deafness at the DFNA16 locus. Gene, 264(1), 113-122. https://doi.org/10.1016/S0378-1119(00)00594-1
Klugbauer, N., Lacinova, L., Flockerzi, V., & Hofmann, F. (1995). Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. The EMBO Journal, 14(6), 1084-1090. https://doi.org/10.1002/j.1460-2075.1995.tb07091.x
Liao, Y., Deprez, L., Maljevic, S., Pitsch, J., Claes, L., Hristova, D., Jordanova, A., Ala-Mello, S., Bellan-Koch, A., Blazevic, D., Schubert, S., Thomas, E. A., Petrou, S., Becker, A. J., De Jonghe, P., & Lerche, H. (2010). Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain, 133(5), 1403-1414. https://doi.org/10.1093/brain/awq057
Liu, Y., Li, B., Tan, R., Zhu, X., & Wang, Y. (2014). A gradient-boosting approach for filtering de novo mutations in parent-offspring trios. Bioinformatics, 30(13), 1830-1836. https://doi.org/10.1093/bioinformatics/btu141
Meisler, M. H., & Kearney, J. A. (2005). Sodium channel mutations in epilepsy and other neurological disorders. The Journal of Clinical Investigation, 115(8), 2010-2017. https://doi.org/10.1172/JCI25466.2010
Nakamura, K., Kato, M., Osaka, H., Yamashita, S., Nakagawa, E., Haginoya, K., Tohyama, J., Okuda, M., Wada, T., Shimakawa, S., Imai, K., Takeshita, S., Ishiwata, H., Lev, D., Lerman-Sagie, T., Cervantes-Barragán, D. E., Villarroel, C. E., Ohfu, M., Writzl, K., … Saitsu, H. (2013). Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology, 81(11), 992-998. https://doi.org/10.1212/WNL.0b013e3182a43e57
Ng, P. C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 11(5), 863-874. https://doi.org/10.1101/gr.176601
Plummer, N. W., Galt, J., Jones, J. M., Burgess, D. L., Sprunger, L. K., Kohrman, D. C., & Meisler, M. H. (1998). Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics, 54(2), 287-296. https://doi.org/10.1006/geno.1998.5550
Samanta, D., & Ramakrishnaiah, R. (2015). De novo R853Q mutation of SCN2A gene and West syndrome. Acta Neurologica Belgica, 115(4), 773-776. https://doi.org/10.1007/s13760-015-0454-8
Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., Walker, M. F., Ober, G. T., Teran, N. A., Song, Y., El-Fishawy, P., Murtha, R. C., Choi, M., Overton, J. D., Bjornson, R. D., … State, M. W. (2013). De novo mutations revealed by whole exome sequencing are strongly associated with autism. Nature, 485(7397), 237-241. https://doi.org/10.1038/nature10945.De
Schwartzkroin, P. A. (1999). Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Research, 37, 171-180. https://doi.org/10.1016/S0920-1211(99)00069-8
Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). Mutationtaster2: Mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361-362. https://doi.org/10.1038/nmeth.2890
Spampanato, J., Escayg, A., Meisler, M. H., & Goldin, A. L. (2001). Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. Journal of Neuroscience, 21(19), 7481-7490. https://doi.org/10.1523/jneurosci.21-19-07481.2001
Stafstrom, C. E. (2002). Assessing the behavioral and cognitive effects of seizures on the developing brain. Progress in Brain Research, 135, 377-390. https://doi.org/10.1016/S0079-6123(02)35034-9
Stafstrom, C. E., & Rho, J. M. (2012). The ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in Pharmacology, 3, 59. https://doi.org/10.3389/fphar.2012.00059
Sugawara, T., Tsurubuchi, Y., Agarwala, K. L., Ito, M., Fukuma, G., Mazaki-Miyazaki, E., Nagafuji, H., Noda, M., Imoto, K., Wada, K., Mitsudome, A., Kaneko, S., Montal, M., Nagata, K., Hirose, S., & Yamakawa, K. (2001). A missense mutation of the Na+ channel a II subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proceedings of the National Academy of Sciences, 98(11), 6384-6389. https://doi.org/10.1073/pnas.111065098
Turkdogan, D., Thomas, G., & Demirel, B. (2018). Ketogenic diet as a successful early treatment modality for SCN2A mutation. Brain Dev, 41, 389-391. https://doi.org/10.1016/J.BRAINDEV.2018.10.015
Wolff, M., Johannesen, K. M., Hedrich, U. B. S., Masnada, S., Rubboli, G., Gardella, E., Lesca, G., Ville, D., Milh, M., Villard, L., Afenjar, A., Chantot-Bastaraud, S., Mignot, C., Lardennois, C., Nava, C., Schwarz, N., Gérard, M., Perrin, L., Doummar, D., … Møller, R. S. (2017). Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain, 140(5), 1316-1336. https://doi.org/10.1093/brain/awx054
Xu, R., Thomas, E. A., Jenkins, M., Gazina, E. V., Chiu, C., Heron, S. E., Mulley, J. C., Scheffer, I. E., Berkovic, S. F., & Petrou, S. (2007). A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel. Molecular and Cellular Neuroscience, 35(2), 292-301. https://doi.org/10.1016/j.mcn.2007.03.003

Auteurs

Anja Penkl (A)

Department of Pediatrics, University Hospital of Münster, Münster, Germany.

Janine Reunert (J)

Department of Pediatrics, University Hospital of Münster, Münster, Germany.

Otfried M Debus (OM)

Department of Pediatrics, Clemenshospital Münster, Münster, Germany.

Anna Homann (A)

Department of Neurology, Hospital Ludmillenstift, Meppen, Germany.

Ulrike Och (U)

Department of Pediatrics, University Hospital of Münster, Münster, Germany.

Stephan Rust (S)

Department of Pediatrics, University Hospital of Münster, Münster, Germany.

Thorsten Marquardt (T)

Department of Pediatrics, University Hospital of Münster, Münster, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH