Diffusion MRI harmonization enables joint-analysis of multicentre data of patients with cerebral small vessel disease.
Cerebral small vessel disease
Diffusion MRI
Harmonization
Multicentre
White matter hyperintensities
Journal
NeuroImage. Clinical
ISSN: 2213-1582
Titre abrégé: Neuroimage Clin
Pays: Netherlands
ID NLM: 101597070
Informations de publication
Date de publication:
2021
2021
Historique:
received:
21
10
2021
accepted:
16
11
2021
entrez:
16
12
2021
pubmed:
17
12
2021
medline:
20
1
2022
Statut:
ppublish
Résumé
Acquisition-related differences in diffusion magnetic resonance imaging (dMRI) hamper pooling of multicentre data to achieve large sample sizes. A promising solution is to harmonize the raw diffusion signal using rotation invariant spherical harmonic (RISH) features, but this has not been tested in elderly subjects. Here we aimed to establish if RISH harmonization effectively removes acquisition-related differences in multicentre dMRI of elderly subjects with cerebral small vessel disease (SVD), while preserving sensitivity to disease effects. Five cohorts of patients with SVD (N = 397) and elderly controls (N = 175) with 3 Tesla MRI on different systems were included. First, to establish effectiveness of harmonization, the RISH method was trained with data of 13 to 15 age and sex-matched controls from each site. Fractional anisotropy (FA) and mean diffusivity (MD) were compared in matched controls between sites using tract-based spatial statistics (TBSS) and voxel-wise analysis, before and after harmonization. Second, to assess sensitivity to disease effects, we examined whether the contrast (effect sizes of FA, MD and peak width of skeletonized MD - PSMD) between patients and controls within each site remained unaffected by harmonization. Finally, we evaluated the association between white matter hyperintensity (WMH) burden, FA, MD and PSMD using linear regression analyses both within individual cohorts as well as with pooled scans from multiple sites, before and after harmonization. Before harmonization, significant differences in FA and MD were observed between matched controls of different sites (p < 0.05). After harmonization these site-differences were removed. Within each site, RISH harmonization did not alter the effect sizes of FA, MD and PSMD between patients and controls (relative change in Cohen's d = 4 %) nor the strength of association with WMH volume (relative change in R We showed that RISH harmonization effectively removes acquisition-related differences in dMRI of elderly subjects while preserving sensitivity to SVD-related effects. This study provides proof of concept for future multicentre SVD studies with pooled datasets.
Identifiants
pubmed: 34911192
pii: S2213-1582(21)00330-2
doi: 10.1016/j.nicl.2021.102886
pmc: PMC8609094
pii:
doi:
Types de publication
Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
102886Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Références
Neuroimage. 2004 Nov;23(3):1176-85
pubmed: 15528117
Neuroimage. 2019 Jan 1;184:180-200
pubmed: 30205206
Rev Neurol (Paris). 2017 Apr;173(4):201-210
pubmed: 28392060
Biochim Biophys Acta. 2012 Mar;1822(3):401-7
pubmed: 21549191
Neuroimage. 2010 Jul 15;51(4):1384-94
pubmed: 20338248
Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19
pubmed: 27754499
Neuroscience. 2020 Nov 21;449:99-115
pubmed: 32896599
Neuroimage. 2017 Aug 1;156:423-434
pubmed: 28412443
Hum Brain Mapp. 2012 Feb;33(2):466-77
pubmed: 21391276
Ann Neurol. 2016 Oct;80(4):581-92
pubmed: 27518166
Neuroimage Clin. 2019;24:102048
pubmed: 31706220
Neuroimage. 2020 Nov 15;222:117206
pubmed: 32745681
Neuropsychologia. 2018 Jul 1;115:101-111
pubmed: 29550526
Alzheimers Dement (Amst). 2019 Oct 25;11:721-729
pubmed: 31700990
BMC Neurol. 2014 Dec 31;14:254
pubmed: 25551191
J Neurol Neurosurg Psychiatry. 2013 Jun;84(6):686-92
pubmed: 23385846
J Magn Reson Imaging. 2019 Apr;49(4):955-965
pubmed: 30605253
Dev Neuropsychol. 2010;35(3):257-77
pubmed: 20446132
AJNR Am J Neuroradiol. 2017 Mar;38(3):537-545
pubmed: 28007768
Cereb Circ Cogn Behav. 2021 Apr 24;2:100013
pubmed: 36324717
AJR Am J Roentgenol. 1987 Aug;149(2):351-6
pubmed: 3496763
Neuroimage. 2017 Nov 1;161:149-170
pubmed: 28826946
Mol Psychiatry. 2020 Dec;25(12):3208-3219
pubmed: 31511636
Neuroimage. 2012 Feb 1;59(3):2208-16
pubmed: 22005591
Neuroimage. 2013 Nov 1;81:335-346
pubmed: 23684865
Neuroimage. 2006 Jul 15;31(4):1487-505
pubmed: 16624579
IEEE Trans Med Imaging. 2019 Nov;38(11):2556-2568
pubmed: 30908194
Alzheimers Dement. 2020 Nov;16(11):1504-1514
pubmed: 32808747
Psychiatry Res. 2011 Dec 30;194(3):363-371
pubmed: 22078796
Magn Reson Med. 2005 Jun;53(6):1432-40
pubmed: 15906300
Diabetes. 2013 Jun;62(6):2112-5
pubmed: 23349494
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788:
pubmed: 27330240
Stroke. 2015 Mar;46(3):786-92
pubmed: 25604251
Neuroimage. 2011 Apr 15;55(4):1566-76
pubmed: 21262366
Neurology. 2019 Oct 22;93(17):e1627-e1634
pubmed: 31530710
Neurology. 2021 Feb 2;96(5):e698-e708
pubmed: 33199431
Magn Reson Med. 2009 Jun;61(6):1336-49
pubmed: 19319973
Brain. 2015 Jan;138(Pt 1):179-88
pubmed: 25367025
Neuroimage. 2020 Nov 1;221:117128
pubmed: 32673745
AJR Am J Roentgenol. 2014 Jan;202(1):W26-33
pubmed: 24370162
Neuroimage. 2008 Jan 15;39(2):566-77
pubmed: 17951075
NMR Biomed. 2018 Nov;31(11):e3965
pubmed: 30052293
Magn Reson Imaging. 2019 Feb;56:110-118
pubmed: 30314665
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
Magn Reson Med. 2017 Jan;77(1):285-299
pubmed: 26822700
Neuroimage Clin. 2015 Feb 16;7:518-24
pubmed: 25737960
Cereb Cortex. 2004 Sep;14(9):945-51
pubmed: 15115737
Brain Imaging Behav. 2014 Jun;8(2):323-31
pubmed: 24113873
Neurology. 2017 Oct 10;89(15):1569-1577
pubmed: 28878046
Neuroimage. 2019 Jul 15;195:285-299
pubmed: 30716459
J Neurotrauma. 2009 Apr;26(4):481-95
pubmed: 19196176