Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
03 2022
Historique:
received: 13 05 2021
accepted: 29 09 2021
pubmed: 18 12 2021
medline: 20 4 2022
entrez: 17 12 2021
Statut: ppublish

Résumé

Extended synaptotagmins (E-Syts) mediate lipid exchange between the endoplasmic reticulum (ER) and the plasma membrane (PM). Anchored on the ER, E-Syts bind the PM via an array of C2 domains in a Ca

Identifiants

pubmed: 34916620
doi: 10.1038/s41589-021-00914-3
pii: 10.1038/s41589-021-00914-3
pmc: PMC8891060
mid: NIHMS1781807
doi:

Substances chimiques

Lipids 0
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

313-320

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM120193
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS036251
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM093341
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS113236
Pays : United States
Organisme : NINDS NIH HHS
ID : R37 NS036251
Pays : United States
Organisme : NIDA NIH HHS
ID : P30 DA018343
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM131714
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).
pubmed: 18216767 doi: 10.1038/nrm2328
Hurley, J. H. Membrane binding domains. Biochim. Biophys. Acta 1761, 805–811 (2006).
pubmed: 16616874 pmcid: 2049088 doi: 10.1016/j.bbalip.2006.02.020
Pinheiro, P. S., Houy, S. & Sorensen, J. B. C2-domain containing calcium sensors in neuroendocrine secretion. J. Neurochem. 139, 943–958 (2016).
pubmed: 27731902 doi: 10.1111/jnc.13865
Bian, X., Saheki, Y. & De Camilli, P. Ca
pubmed: 29222176 doi: 10.15252/embj.201797359
Xu, J. J. et al. Structure and Ca
pubmed: 24373768 doi: 10.1016/j.str.2013.11.011
Pangrsic, T., Reisinger, E. & Moser, T. Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci. 35, 671–680 (2012).
pubmed: 22959777 doi: 10.1016/j.tins.2012.08.002
Min, S. W., Chang, W. P. & Sudhof, T. C. E-Syts, a family of membranous Ca
pubmed: 17360437 pmcid: 1820668 doi: 10.1073/pnas.0611725104
Saheki, Y. & De Camilli, P. The extended-synaptotagmins. Biochim. Biophys. Acta 1864, 1490–1493 (2017).
pmcid: 5642939 doi: 10.1016/j.bbamcr.2017.03.013
Lek, A., Evesson, F. J., Sutton, R. B., North, K. N. & Cooper, S. T. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 13, 185–194 (2012).
pubmed: 21838746 doi: 10.1111/j.1600-0854.2011.01267.x
Giordano, F. et al. PI(4,5)P
pubmed: 23791178 pmcid: 3716012 doi: 10.1016/j.cell.2013.05.026
Chang, C. L. et al. Feedback regulation of receptor-induced Ca
pubmed: 24183667 doi: 10.1016/j.celrep.2013.09.038
Saheki, Y. & De Camilli, P. Endoplasmic reticulum–plasma membrane contact sites. Annu. Rev. Biochem. 86, 659–684 (2017).
pubmed: 28301744 doi: 10.1146/annurev-biochem-061516-044932
Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515 (2016).
pubmed: 27065097 pmcid: 4848133 doi: 10.1038/ncb3339
Yu, H. J. et al. Extended synaptotagmins are Ca
pubmed: 27044075 pmcid: 4843466 doi: 10.1073/pnas.1517259113
Zhao, H. X. & Lappalainen, P. A simple guide to biochemical approaches for analyzing protein–lipid interactions. Mol. Biol. Cell 23, 2823–2830 (2012).
pubmed: 22848065 pmcid: 3408410 doi: 10.1091/mbc.e11-07-0645
Knight, J. D., Lerner, M. G., Marcano-Velazquez, J. G., Pastor, R. W. & Falke, J. J. Single molecule diffusion of membrane-bound proteins: window into lipid contacts and bilayer dynamics. Biophys. J. 99, 2879–2887 (2010).
pubmed: 21044585 pmcid: 2966005 doi: 10.1016/j.bpj.2010.08.046
Ma, L. et al. Single-molecule force spectroscopy of protein–membrane interactions. eLife 6, e30493 (2017).
pubmed: 29083305 pmcid: 5690283 doi: 10.7554/eLife.30493
Nath, V. R., Mishra, S., Basak, B., Trivedi, D. & Raghu, P. Extended synaptotagmin regulates membrane contact site structure and lipid transfer function in vivo. EMBO Rep. 21, e50264 (2020).
pubmed: 32716137 pmcid: 7507014 doi: 10.15252/embr.202050264
Fernandez-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004–E2013 (2015).
pubmed: 25787254 pmcid: 4413308 doi: 10.1073/pnas.1503191112
Idevall-Hagren, O., Lu, A., Xie, B. & De Camilli, P. Triggered Ca
pubmed: 26202220 pmcid: 4585464 doi: 10.15252/embj.201591565
Kang, F. et al. E-Syt1 re-arranges STIM1 clusters to stabilize ring-shaped ER–PM contact sites and accelerate Ca
pubmed: 30850711 pmcid: 6408583 doi: 10.1038/s41598-019-40331-0
Schauder, C. M. et al. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510, 552–555 (2014).
pubmed: 24847877 pmcid: 4135724 doi: 10.1038/nature13269
Bian, X., Zhang, Z., Xiong, Q. C., De Camilli, P. & Lin, C. X. A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat. Chem. Biol. 15, 830–837 (2019).
pubmed: 31320758 pmcid: 6650167 doi: 10.1038/s41589-019-0325-3
Li, P. Q., Lees, J. A., Lusk, C. P. & Reinisch, K. M. Cryo-EM reconstruction of a VPS13 fragment reveals a long groove to channel lipids between membranes. J. Cell Biol. 219, e202001161 (2020).
pubmed: 32182622 pmcid: 7199853 doi: 10.1083/jcb.202001161
Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).
pubmed: 30337668 doi: 10.1038/s41580-018-0071-5
Corbalan-Garcia, S. & Gomez-Fernandez, J. C. Signaling through C2 domains: more than one lipid target. Biochim. Biophys. Acta 1838, 1536–1547 (2014).
pubmed: 24440424 doi: 10.1016/j.bbamem.2014.01.008
Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).
pubmed: 26787909 pmcid: 4747704 doi: 10.1073/pnas.1519214113
Min, D., Jefferson, R. E., Bowie, J. U. & Yoon, T. Y. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat. Chem. Biol. 11, 981–987 (2015).
pubmed: 26479439 pmcid: 4986997 doi: 10.1038/nchembio.1939
Zhang, Y. L., Jiao, J. & Rebane, A. A. Hidden Markov modeling with detailed balance and its application to single protein folding. Biophys. J. 111, 2110–2124 (2016).
pubmed: 27851936 pmcid: 5112951 doi: 10.1016/j.bpj.2016.09.045
Rebane, A. A., Ma, L. & Zhang, Y. L. Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys. J. 110, 441–454 (2016).
pubmed: 26789767 pmcid: 4724646 doi: 10.1016/j.bpj.2015.12.003
Steinkuhler, J. et al. Membrane fluctuations and acidosis regulate cooperative binding of ‘marker of self’ protein CD47 with the macrophage checkpoint receptor SIRPα. J. Cell Sci. 132, jcs216770 (2018).
pubmed: 29777034 pmcid: 6398477 doi: 10.1242/jcs.216770
Weikl, T. R., Hu, J. L., Kav, B. & Rozycki, B. Binding and segregation of proteins in membrane adhesion: theory, modeling, and simulations. Adv. Biomembr. Lipid Self-Assem. 30, 159–194 (2019).
doi: 10.1016/bs.abl.2019.10.004
Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).
doi: 10.1021/ma00130a008
Krishnamurthy, V. M., Semetey, V., Bracher, P. J., Shen, N. & Whitesides, G. M. Dependence of effective molarity on linker length for an intramolecular protein–ligand system. J. Am. Chem. Soc. 129, 1312–1320 (2007).
pubmed: 17263415 pmcid: 2535942 doi: 10.1021/ja066780e
Shen, H., Pirruccello, M. & De Camilli, P. SnapShot: membrane curvature sensors and generators. Cell 150, 1300.e1–1300.e2 (2012).
doi: 10.1016/j.cell.2012.08.017
Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).
pubmed: 23797029 pmcid: 3757118 doi: 10.1016/j.ceb.2013.05.006
Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).
pubmed: 26924577 pmcid: 4808403 doi: 10.1016/j.cell.2016.01.021
Weikl, T. R. Membrane-mediated cooperativity of proteins. Annu. Rev. Phys. Chem. 69, 521–539 (2018).
pubmed: 29490203 doi: 10.1146/annurev-physchem-052516-050637
Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392–396 (2001).
pubmed: 11331914 doi: 10.1038/35073095
Brownell, W. E., Qian, F. & Anvari, B. Cell membrane tethers generate mechanical force in response to electrical stimulation. Biophys. J. 99, 845–852 (2010).
pubmed: 20682262 pmcid: 3297770 doi: 10.1016/j.bpj.2010.05.025
Jiao, J. Y., Rebane, A. A., Ma, L. & Zhang, Y. L. Single-molecule protein folding experiments using high-resolution optical tweezers. Methods Mol. Biol. 1486, 357–390 (2017).
pubmed: 27844436 pmcid: 5508109 doi: 10.1007/978-1-4939-6421-5_14
Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl Acad. Sci. USA 103, 9006–9011 (2006).
pubmed: 16751267 pmcid: 1482556 doi: 10.1073/pnas.0603342103
Sirinakis, G., Ren, Y. X., Gao, Y., Xi, Z. Q. & Zhang, Y. L. Combined and versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev. Sci. Instrum. 83, 093708 (2012).
pubmed: 23020384 pmcid: 3465359 doi: 10.1063/1.4752190
Zhang, Y. L., Sirinakis, G., Gundersen, G., Xi, Z. Q. & Gao, Y. DNA translocation of ATP-dependent chromatin remodelling factors revealed by high-resolution optical tweezers. Methods Enzymol. 513, 3–28 (2012).
pubmed: 22929763 doi: 10.1016/B978-0-12-391938-0.00001-X
Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).
pubmed: 18084394 doi: 10.1364/OL.23.000007
Gao, Y. et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340–1343 (2012).
pubmed: 22903523 pmcid: 3677750 doi: 10.1126/science.1224492
Cowley, A. C., Fuller, N. L., Rand, R. P. & Parsegian, V. A. Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry 17, 3163–3168 (1978).
pubmed: 698192 doi: 10.1021/bi00608a034
Zorman, S. et al. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife 3, e03348 (2014).
pubmed: 25180101 pmcid: 4166003 doi: 10.7554/eLife.03348

Auteurs

Jinghua Ge (J)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.

Xin Bian (X)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.
State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.

Lu Ma (L)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
Nanobiology Institute, Yale University, West Haven, CT, USA.
Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Yiying Cai (Y)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.

Yanghui Li (Y)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China.

Jie Yang (J)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.

Erdem Karatekin (E)

Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
Nanobiology Institute, Yale University, West Haven, CT, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France.

Pietro De Camilli (P)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.
Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.

Yongli Zhang (Y)

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA. yongli.zhang@yale.edu.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. yongli.zhang@yale.edu.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Humans Vitiligo Male Female Adult
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions

Classifications MeSH