Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers.
Journal
Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
13
05
2021
accepted:
29
09
2021
pubmed:
18
12
2021
medline:
20
4
2022
entrez:
17
12
2021
Statut:
ppublish
Résumé
Extended synaptotagmins (E-Syts) mediate lipid exchange between the endoplasmic reticulum (ER) and the plasma membrane (PM). Anchored on the ER, E-Syts bind the PM via an array of C2 domains in a Ca
Identifiants
pubmed: 34916620
doi: 10.1038/s41589-021-00914-3
pii: 10.1038/s41589-021-00914-3
pmc: PMC8891060
mid: NIHMS1781807
doi:
Substances chimiques
Lipids
0
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
313-320Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM120193
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS036251
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM093341
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS113236
Pays : United States
Organisme : NINDS NIH HHS
ID : R37 NS036251
Pays : United States
Organisme : NIDA NIH HHS
ID : P30 DA018343
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM131714
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).
pubmed: 18216767
doi: 10.1038/nrm2328
Hurley, J. H. Membrane binding domains. Biochim. Biophys. Acta 1761, 805–811 (2006).
pubmed: 16616874
pmcid: 2049088
doi: 10.1016/j.bbalip.2006.02.020
Pinheiro, P. S., Houy, S. & Sorensen, J. B. C2-domain containing calcium sensors in neuroendocrine secretion. J. Neurochem. 139, 943–958 (2016).
pubmed: 27731902
doi: 10.1111/jnc.13865
Bian, X., Saheki, Y. & De Camilli, P. Ca
pubmed: 29222176
doi: 10.15252/embj.201797359
Xu, J. J. et al. Structure and Ca
pubmed: 24373768
doi: 10.1016/j.str.2013.11.011
Pangrsic, T., Reisinger, E. & Moser, T. Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci. 35, 671–680 (2012).
pubmed: 22959777
doi: 10.1016/j.tins.2012.08.002
Min, S. W., Chang, W. P. & Sudhof, T. C. E-Syts, a family of membranous Ca
pubmed: 17360437
pmcid: 1820668
doi: 10.1073/pnas.0611725104
Saheki, Y. & De Camilli, P. The extended-synaptotagmins. Biochim. Biophys. Acta 1864, 1490–1493 (2017).
pmcid: 5642939
doi: 10.1016/j.bbamcr.2017.03.013
Lek, A., Evesson, F. J., Sutton, R. B., North, K. N. & Cooper, S. T. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 13, 185–194 (2012).
pubmed: 21838746
doi: 10.1111/j.1600-0854.2011.01267.x
Giordano, F. et al. PI(4,5)P
pubmed: 23791178
pmcid: 3716012
doi: 10.1016/j.cell.2013.05.026
Chang, C. L. et al. Feedback regulation of receptor-induced Ca
pubmed: 24183667
doi: 10.1016/j.celrep.2013.09.038
Saheki, Y. & De Camilli, P. Endoplasmic reticulum–plasma membrane contact sites. Annu. Rev. Biochem. 86, 659–684 (2017).
pubmed: 28301744
doi: 10.1146/annurev-biochem-061516-044932
Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515 (2016).
pubmed: 27065097
pmcid: 4848133
doi: 10.1038/ncb3339
Yu, H. J. et al. Extended synaptotagmins are Ca
pubmed: 27044075
pmcid: 4843466
doi: 10.1073/pnas.1517259113
Zhao, H. X. & Lappalainen, P. A simple guide to biochemical approaches for analyzing protein–lipid interactions. Mol. Biol. Cell 23, 2823–2830 (2012).
pubmed: 22848065
pmcid: 3408410
doi: 10.1091/mbc.e11-07-0645
Knight, J. D., Lerner, M. G., Marcano-Velazquez, J. G., Pastor, R. W. & Falke, J. J. Single molecule diffusion of membrane-bound proteins: window into lipid contacts and bilayer dynamics. Biophys. J. 99, 2879–2887 (2010).
pubmed: 21044585
pmcid: 2966005
doi: 10.1016/j.bpj.2010.08.046
Ma, L. et al. Single-molecule force spectroscopy of protein–membrane interactions. eLife 6, e30493 (2017).
pubmed: 29083305
pmcid: 5690283
doi: 10.7554/eLife.30493
Nath, V. R., Mishra, S., Basak, B., Trivedi, D. & Raghu, P. Extended synaptotagmin regulates membrane contact site structure and lipid transfer function in vivo. EMBO Rep. 21, e50264 (2020).
pubmed: 32716137
pmcid: 7507014
doi: 10.15252/embr.202050264
Fernandez-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004–E2013 (2015).
pubmed: 25787254
pmcid: 4413308
doi: 10.1073/pnas.1503191112
Idevall-Hagren, O., Lu, A., Xie, B. & De Camilli, P. Triggered Ca
pubmed: 26202220
pmcid: 4585464
doi: 10.15252/embj.201591565
Kang, F. et al. E-Syt1 re-arranges STIM1 clusters to stabilize ring-shaped ER–PM contact sites and accelerate Ca
pubmed: 30850711
pmcid: 6408583
doi: 10.1038/s41598-019-40331-0
Schauder, C. M. et al. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510, 552–555 (2014).
pubmed: 24847877
pmcid: 4135724
doi: 10.1038/nature13269
Bian, X., Zhang, Z., Xiong, Q. C., De Camilli, P. & Lin, C. X. A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat. Chem. Biol. 15, 830–837 (2019).
pubmed: 31320758
pmcid: 6650167
doi: 10.1038/s41589-019-0325-3
Li, P. Q., Lees, J. A., Lusk, C. P. & Reinisch, K. M. Cryo-EM reconstruction of a VPS13 fragment reveals a long groove to channel lipids between membranes. J. Cell Biol. 219, e202001161 (2020).
pubmed: 32182622
pmcid: 7199853
doi: 10.1083/jcb.202001161
Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).
pubmed: 30337668
doi: 10.1038/s41580-018-0071-5
Corbalan-Garcia, S. & Gomez-Fernandez, J. C. Signaling through C2 domains: more than one lipid target. Biochim. Biophys. Acta 1838, 1536–1547 (2014).
pubmed: 24440424
doi: 10.1016/j.bbamem.2014.01.008
Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).
pubmed: 26787909
pmcid: 4747704
doi: 10.1073/pnas.1519214113
Min, D., Jefferson, R. E., Bowie, J. U. & Yoon, T. Y. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat. Chem. Biol. 11, 981–987 (2015).
pubmed: 26479439
pmcid: 4986997
doi: 10.1038/nchembio.1939
Zhang, Y. L., Jiao, J. & Rebane, A. A. Hidden Markov modeling with detailed balance and its application to single protein folding. Biophys. J. 111, 2110–2124 (2016).
pubmed: 27851936
pmcid: 5112951
doi: 10.1016/j.bpj.2016.09.045
Rebane, A. A., Ma, L. & Zhang, Y. L. Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys. J. 110, 441–454 (2016).
pubmed: 26789767
pmcid: 4724646
doi: 10.1016/j.bpj.2015.12.003
Steinkuhler, J. et al. Membrane fluctuations and acidosis regulate cooperative binding of ‘marker of self’ protein CD47 with the macrophage checkpoint receptor SIRPα. J. Cell Sci. 132, jcs216770 (2018).
pubmed: 29777034
pmcid: 6398477
doi: 10.1242/jcs.216770
Weikl, T. R., Hu, J. L., Kav, B. & Rozycki, B. Binding and segregation of proteins in membrane adhesion: theory, modeling, and simulations. Adv. Biomembr. Lipid Self-Assem. 30, 159–194 (2019).
doi: 10.1016/bs.abl.2019.10.004
Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).
doi: 10.1021/ma00130a008
Krishnamurthy, V. M., Semetey, V., Bracher, P. J., Shen, N. & Whitesides, G. M. Dependence of effective molarity on linker length for an intramolecular protein–ligand system. J. Am. Chem. Soc. 129, 1312–1320 (2007).
pubmed: 17263415
pmcid: 2535942
doi: 10.1021/ja066780e
Shen, H., Pirruccello, M. & De Camilli, P. SnapShot: membrane curvature sensors and generators. Cell 150, 1300.e1–1300.e2 (2012).
doi: 10.1016/j.cell.2012.08.017
Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).
pubmed: 23797029
pmcid: 3757118
doi: 10.1016/j.ceb.2013.05.006
Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).
pubmed: 26924577
pmcid: 4808403
doi: 10.1016/j.cell.2016.01.021
Weikl, T. R. Membrane-mediated cooperativity of proteins. Annu. Rev. Phys. Chem. 69, 521–539 (2018).
pubmed: 29490203
doi: 10.1146/annurev-physchem-052516-050637
Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392–396 (2001).
pubmed: 11331914
doi: 10.1038/35073095
Brownell, W. E., Qian, F. & Anvari, B. Cell membrane tethers generate mechanical force in response to electrical stimulation. Biophys. J. 99, 845–852 (2010).
pubmed: 20682262
pmcid: 3297770
doi: 10.1016/j.bpj.2010.05.025
Jiao, J. Y., Rebane, A. A., Ma, L. & Zhang, Y. L. Single-molecule protein folding experiments using high-resolution optical tweezers. Methods Mol. Biol. 1486, 357–390 (2017).
pubmed: 27844436
pmcid: 5508109
doi: 10.1007/978-1-4939-6421-5_14
Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl Acad. Sci. USA 103, 9006–9011 (2006).
pubmed: 16751267
pmcid: 1482556
doi: 10.1073/pnas.0603342103
Sirinakis, G., Ren, Y. X., Gao, Y., Xi, Z. Q. & Zhang, Y. L. Combined and versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev. Sci. Instrum. 83, 093708 (2012).
pubmed: 23020384
pmcid: 3465359
doi: 10.1063/1.4752190
Zhang, Y. L., Sirinakis, G., Gundersen, G., Xi, Z. Q. & Gao, Y. DNA translocation of ATP-dependent chromatin remodelling factors revealed by high-resolution optical tweezers. Methods Enzymol. 513, 3–28 (2012).
pubmed: 22929763
doi: 10.1016/B978-0-12-391938-0.00001-X
Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).
pubmed: 18084394
doi: 10.1364/OL.23.000007
Gao, Y. et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340–1343 (2012).
pubmed: 22903523
pmcid: 3677750
doi: 10.1126/science.1224492
Cowley, A. C., Fuller, N. L., Rand, R. P. & Parsegian, V. A. Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry 17, 3163–3168 (1978).
pubmed: 698192
doi: 10.1021/bi00608a034
Zorman, S. et al. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife 3, e03348 (2014).
pubmed: 25180101
pmcid: 4166003
doi: 10.7554/eLife.03348