EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 12 2021
Historique:
received: 17 11 2020
accepted: 19 11 2021
entrez: 18 12 2021
pubmed: 19 12 2021
medline: 12 1 2022
Statut: epublish

Résumé

The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor

Identifiants

pubmed: 34921133
doi: 10.1038/s41467-021-27562-4
pii: 10.1038/s41467-021-27562-4
pmc: PMC8683474
doi:

Substances chimiques

Antigens, CD 0
CD4 Antigens 0
CD71 antigen 0
Receptors, Erythropoietin 0
Receptors, Transferrin 0
bcl-X Protein 0
Erythropoietin 11096-26-7
Cyclin-Dependent Kinase Inhibitor p27 147604-94-2
Iron E1UOL152H7
Protein Serine-Threonine Kinases EC 2.7.11.1
eIF2alpha kinase, mouse EC 2.7.11.1

Types de publication

Journal Article Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7334

Subventions

Organisme : NIGMS NIH HHS
ID : R25 GM113686
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK087984
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK120639
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK100915
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL141402
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Kassebaum, N. J. et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624 (2014).
pubmed: 24297872 pmcid: 3907750 doi: 10.1182/blood-2013-06-508325
D’Andrea, A. D., Fasman, G. D. & Lodish, H. F. Erythropoietin receptor and interleukin-2 receptor b chain: a new receptor family. Cell 58, 1023–1024 (1989).
pubmed: 2550142 doi: 10.1016/0092-8674(89)90499-6
Stephenson, J. R., Axelrad, A. A., McLeod, D. L. & Shreeve, M. M. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68, 1542–1546 (1971).
pubmed: 4104431 pmcid: 389236 doi: 10.1073/pnas.68.7.1542
Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).
pubmed: 29466336 pmcid: 5899604 doi: 10.1038/nature25741
Wu, H., Liu, X., Jaenisch, R. & Lodish, H. F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59–67 (1995).
pubmed: 7553874 doi: 10.1016/0092-8674(95)90234-1
Koury, M. J., Bondurant, M. C., Graber, S. E. & Sawyer, S. T. Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta. J. Clin. Invest. 82, 154–159 (1988).
pubmed: 3392205 pmcid: 303489 doi: 10.1172/JCI113564
Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248, 378–381 (1990).
pubmed: 2326648 doi: 10.1126/science.2326648
Koury, M. J. & Bondurant, M. C. The molecular mechanism of erythropoietin action. Eur. J. Biochem. 210, 649–663 (1992).
pubmed: 1483451 doi: 10.1111/j.1432-1033.1992.tb17466.x
Koulnis, M., Porpiglia, E., Hidalgo, D. & Socolovsky, M. In A Systems Biology Approach to Blood Vol. 844 (eds. Corey, S. J., Kimmel, M. & Leonard, J. N.) 37–58 (Springer New York, 2014).
Wickrema, A., Bondurant, M. C. & Krantz, S. B. Abundance and stability of erythropoietin receptor mRNA in mouse erythroid progenitor cells. Blood 78, 2269–2275 (1991).
pubmed: 1657247 doi: 10.1182/blood.V78.9.2269.2269
Broudy, V. C., Lin, N., Brice, M., Nakamoto, B. & Papayannopoulou, T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood 77, 2583–2590 (1991).
pubmed: 1646044 doi: 10.1182/blood.V77.12.2583.2583
Zhang, J., Socolovsky, M., Gross, A. W. & Lodish, H. F. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102, 3938–3946 (2003).
pubmed: 12907435 doi: 10.1182/blood-2003-05-1479
Kieran, M. W., Perkins, A., Orkin, S. & Zon, L. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc. Natl. Acad. Sci. USA 93, 9126–9131 (1996).
pubmed: 8799165 pmcid: 38606 doi: 10.1073/pnas.93.17.9126
Lin, C. S., Lim, S. K., D’Agati, V. & Costantini, F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev. 10, 154–164 (1996).
pubmed: 8566749 doi: 10.1101/gad.10.2.154
Iscove, N. N. The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet. 10, 323–334 (1977).
pubmed: 884703
Fang, J. et al. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts. Blood 110, 2361–2370 (2007).
pubmed: 17548578 pmcid: 1988929 doi: 10.1182/blood-2006-12-063503
Ferro, F. Jr., Kozak, S. L., Hoatlin, M. E. & Kabat, D. Cell surface site for mitogenic interaction of erythropoietin receptors with the membrane glycoprotein encoded by Friend erythroleukemia virus. J. Biol. Chem. 268, 5741–5747 (1993).
pubmed: 8449938 doi: 10.1016/S0021-9258(18)53381-0
Spivak, J. L. et al. Cell cycle-specific behavior of erythropoietin. Exp. Hematol. 24, 141–150 (1996).
pubmed: 8641335
von Lindern, M. et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94, 550–559 (1999).
doi: 10.1182/blood.V94.2.550
Malik, J., Kim, A. R., Tyre, K. A., Cherukuri, A. R. & Palis, J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica 98, 1778–1787 (2013).
pubmed: 23894012 pmcid: 3815180 doi: 10.3324/haematol.2013.087361
Socolovsky, M., Dusanter-Fourt, I. & Lodish, H. F. The Prolactin receptor, as well as severly truncated erythropoietin receptors support differentiation of erythroid progenitors. J. Biol. Chem. 272, 14009–14013 (1997).
pubmed: 9162017 doi: 10.1074/jbc.272.22.14009
Socolovsky, M., Fallon, A. E. J. & Lodish, H. F. The prolactin receptor rescues EpoR−/− erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood 92, 1491–1496 (1998).
pubmed: 9716574 doi: 10.1182/blood.V92.5.1491
Socolovsky, M., Lodish, H. F. & Daley, G. Q. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc. Natl. Acad. Sci. USA 95, 6573–6575 (1998).
pubmed: 9618452 pmcid: 33861 doi: 10.1073/pnas.95.12.6573
Brisken, C., Socolovsky, M., Lodish, H. F. & Weinberg, R. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. PNAS 99, 14241–14245 (2002).
pubmed: 12381781 pmcid: 137868 doi: 10.1073/pnas.222549599
Kadri, Z. et al. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol. Cell Biol. 25, 7412–7422 (2005).
pubmed: 16107690 pmcid: 1190299 doi: 10.1128/MCB.25.17.7412-7422.2005
Hwang, Y. et al. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch. Sci. Adv. 3, e1700298 (2017).
pubmed: 28560351 pmcid: 5446218 doi: 10.1126/sciadv.1700298
Eastman, A. E. et al. Resolving cell cycle speed in one snapshot with a live-cell fluorescent reporter. Cell Rep. 31, 107804 (2020).
pubmed: 32579930 pmcid: 7418154 doi: 10.1016/j.celrep.2020.107804
Hwang, Y., Hidalgo, D. & Socolovsky, M. The shifting shape and functional specializations of the cell cycle during lineage development. Wiley Interdiscip Rev. Syst. Biol. Med. 13, e1504 (2020).
Humbert, P. O. et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol. Cell 6, 281–291 (2000).
pubmed: 10983976 doi: 10.1016/S1097-2765(00)00029-0
Sankaran, V. G. et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 26, 2075–2087 (2012).
pubmed: 22929040 pmcid: 3444733 doi: 10.1101/gad.197020.112
Jayapal, S. R. et al. Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica 100, 431–438 (2015).
pubmed: 25616574 pmcid: 4380715 doi: 10.3324/haematol.2014.106468
Burns, E. R., Reed, L. J. & Wenz, B. Volumetric erythrocyte macrocytosis induced by hydroxyurea. Am. J. Clin. Pathol. 85, 337–341 (1986).
pubmed: 3790210 doi: 10.1093/ajcp/85.3.337
Suragani, R. N. et al. Heme-regulated eIF2alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood 119, 5276–5284 (2012).
pubmed: 22498744 pmcid: 3369616 doi: 10.1182/blood-2011-10-388132
Chen, J. J. & Zhang, S. Heme-regulated eIF2alpha kinase in erythropoiesis and hemoglobinopathies. Blood 134, 1697–1707 (2019).
pubmed: 31554636 pmcid: 6856985 doi: 10.1182/blood.2019001915
Zhang, S. et al. HRI coordinates translation by eIF2alphaP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency. Blood 131, 450–461 (2018).
pubmed: 29101239 pmcid: 5790126 doi: 10.1182/blood-2017-08-799908
Silva, M. et al. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 88, 1576–1582 (1996).
pubmed: 8781412 doi: 10.1182/blood.V88.5.1576.1576
Motoyama, N., Kimura, T., Takahashi, T., Watanabe, T. & Nakano, T. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J. Exp. Med. 189, 1691–1698 (1999).
pubmed: 10359572 pmcid: 2193080 doi: 10.1084/jem.189.11.1691
Socolovsky, M., Fallon, A. E. J., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a
pubmed: 10428030 doi: 10.1016/S0092-8674(00)81013-2
Koulnis, M. et al. Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. Blood 119, 1228–1239 (2012).
pubmed: 22086418 pmcid: 3277355 doi: 10.1182/blood-2011-07-365346
Pop, R. et al. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol. 8, e1000484 (2010).
von Lindern, M., Schmidt, U. & Beug, H. Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton’s tyrosine kinase. Cell Cycle 3, 876–879 (2004).
doi: 10.4161/cc.3.7.1001
Umemura, T., al-Khatti, A., Donahue, R. E., Papayannopoulou, T. & Stamatoyannopoulos, G. Effects of interleukin-3 and erythropoietin on in vivo erythropoiesis and F-cell formation in primates. Blood 74, 1571–1576 (1989).
pubmed: 2477080 doi: 10.1182/blood.V74.5.1571.1571
Garrick, L. M. et al. Ferric-salicylaldehyde isonicotinoyl hydrazone, a synthetic iron chelate, alleviates defective iron utilization by reticulocytes of the belgrade rat. J. Cell. Physiol. 146, 460–465 (1991).
pubmed: 2022700 doi: 10.1002/jcp.1041460317
Nyholm, S. et al. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J. Biol. Chem. 268, 26200–26205 (1993).
pubmed: 8253740 doi: 10.1016/S0021-9258(19)74300-2
Eriksson, S., Munch-Petersen, B., Johansson, K. & Ecklund, H. Structure and function of cellular deoxyribonucleoside kinases. Cell. Mol. Life Sci. CMLS 59, 1327–1346 (2002).
pubmed: 12363036 doi: 10.1007/s00018-002-8511-x
Zhu, L. & Skoultchi, A. I. Coordinating cell proliferation and differentiation. Curr. Opin. Genet Dev. 11, 91–97 (2001).
pubmed: 11163157 doi: 10.1016/S0959-437X(00)00162-3
Dalton, S. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 25, 592–600 (2015).
pubmed: 26410405 pmcid: 4584407 doi: 10.1016/j.tcb.2015.07.007
Quelle, F. W. Cytokine signaling to the cell cycle. Immunologic Res. 39, 173–184 (2007).
doi: 10.1007/s12026-007-0080-5
Khaled, A. R. et al. Cytokine-driven cell cycling is mediated through Cdc25A. J. Cell Biol. 169, 755–763 (2005).
pubmed: 15928203 pmcid: 2171622 doi: 10.1083/jcb.200409099
Matsumura, I. et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J. 18, 1367–1377 (1999).
pubmed: 10064602 pmcid: 1171226 doi: 10.1093/emboj/18.5.1367
Nagao, T. & Hirokawa, M. Diagnosis and treatment of macrocytic anemias in adults. J. Gen. Fam. Med. 18, 200–204 (2017).
pubmed: 29264027 pmcid: 5689413 doi: 10.1002/jgf2.31
Han, A. P. et al. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918 (2001).
pubmed: 11726526 pmcid: 125753 doi: 10.1093/emboj/20.23.6909
Liu, Y. et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108, 123–133 (2006).
pubmed: 16527892 pmcid: 1895827 doi: 10.1182/blood-2005-11-4458
Chen, K. et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA 106, 17413–17418 (2009).
pubmed: 19805084 pmcid: 2762680 doi: 10.1073/pnas.0909296106
Kalfa, T. & McGrath, K. E. Analysis of erythropoiesis using imaging flow cytometry. Methods Mol. Biol. 1698, 175–192 (2018).
pubmed: 29076090 doi: 10.1007/978-1-4939-7428-3_10
McGrath, K. E., Bushnell, T. P. & Palis, J. Multispectral imaging of hematopoietic cells: where flow meets morphology. J. Immunol. Methods 336, 91–97 (2008).
pubmed: 18539294 pmcid: 2529019 doi: 10.1016/j.jim.2008.04.012
Erslev, A. J., Wilson, J. & Caro, J. Erythropoietin titers in anemic, nonuremic patients. J. Lab Clin. Med. 109, 429–433 (1987).
pubmed: 3102659
Kojima, S., Matsuyama, T. & Kodera, Y. Circulating erythropoietin in patients with acquired aplastic anaemia. Acta Haematol. 94, 117–122 (1995).
pubmed: 7502626 doi: 10.1159/000203992
Dey, S., Curtis, D. J., Jane, S. M. & Brandt, S. J. The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol. Cell Biol. 30, 2181–2192 (2010).
pubmed: 20194619 pmcid: 2863590 doi: 10.1128/MCB.01441-09
Chagraoui, H. et al. SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood 118, 723–735 (2011).
pubmed: 21596846 doi: 10.1182/blood-2011-01-328765
Hsieh, F. F. et al. Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase. Blood 96, 2746–2754 (2000).
pubmed: 11023508 doi: 10.1182/blood.V96.8.2746.h8002746_2746_2754
Rylski, M. et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol. Cell Biol. 23, 5031–5042 (2003).
pubmed: 12832487 pmcid: 162202 doi: 10.1128/MCB.23.14.5031-5042.2003
Bouscary, D. et al. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 101, 3436–3443 (2003).
pubmed: 12506011 doi: 10.1182/blood-2002-07-2332
Gnanapragasam, M. N. et al. EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128, 1631–1641 (2016).
pubmed: 27480112 pmcid: 5034741 doi: 10.1182/blood-2016-03-706671
Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248 (1994).
pubmed: 8106507 doi: 10.1016/S0021-9258(17)37680-9
Porpiglia, E., Hidalgo, D., Koulnis, M., Tzafriri, A. R. & Socolovsky, M. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities. PLoS Biol. 10, e1001383 (2012).
pubmed: 22969412 pmcid: 3433736 doi: 10.1371/journal.pbio.1001383
Kuhrt, D. & Wojchowski, D. M. Emerging EPO and EPO receptor regulators and signal transducers. Blood 125, 3536–3541 (2015).
pubmed: 25887776 pmcid: 4458796 doi: 10.1182/blood-2014-11-575357
Lodish, H. F., Ghaffari, S., Socolovsky, M., Tong, W. & Zhang, J. In Erythropoietins, Erythropoietic Factors, and Erythropoiesis: Molecular, Cellular, Preclinical, and Clinical Biology (eds. Elliott, S. G., Foote, M. & Molineux, G.) 155–174 (Birkhäuser, Basel, 2009).
Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a(
pubmed: 11719363 doi: 10.1182/blood.V98.12.3261
Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).
pubmed: 9660836 doi: 10.1074/jbc.273.29.18623
Heuberger, J. et al. Effects of erythropoietin on cycling performance of well trained cyclists: a double-blind, randomised, placebo-controlled trial. Lancet Haematol. 4, e374–e386 (2017).
pubmed: 28669689 doi: 10.1016/S2352-3026(17)30105-9
Bosch, F. H. et al. Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation. Blood 79, 254–260 (1992).
pubmed: 1728314 doi: 10.1182/blood.V79.1.254.254
Willekens, F. L. et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 101, 747–751 (2003).
pubmed: 12393566 doi: 10.1182/blood-2002-02-0500
Gifford, S. C., Derganc, J., Shevkoplyas, S. S., Yoshida, T. & Bitensky, M. W. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br. J. Haematol. 135, 395–404 (2006).
pubmed: 16989660 doi: 10.1111/j.1365-2141.2006.06279.x
Franco, R. S. et al. Changes in the properties of normal human red blood cells during in vivo aging. Am. J. Hematol. 88, 44–51 (2013).
pubmed: 23115087 doi: 10.1002/ajh.23344
d’Onofrio, G. et al. Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia. Blood 85, 818–823 (1995).
pubmed: 7833482 doi: 10.1182/blood.V85.3.818.bloodjournal853818
Socolovsky, M. et al. Negative autoregulation by FAS mediates robust fetal erythropoiesis. PLoS Biol. 5, e252 (2007).
pubmed: 17896863 pmcid: 1988857 doi: 10.1371/journal.pbio.0050252
Thomas, P. Making sense of snapshot data: ergodic principle for clonal cell populations. J. R. Soc. Interface 14, 20170467 (2017).
Shearstone, J. R. et al. Global DNA demethylation during mouse erythropoiesis in vivo. Science 334, 799–802 (2011).
pubmed: 22076376 pmcid: 3230325 doi: 10.1126/science.1207306
Panzenböck, B., Bartunek, P., Mapara, M. Y. & Zenke, M. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92, 3658–3668 (1998).
pubmed: 9808559 doi: 10.1182/blood.V92.10.3658
Gnanapragasam, M. N. & Bieker, J. J. Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr. Opin. Hematol. 24, 183–190 (2017).
pubmed: 28157724 pmcid: 5523457 doi: 10.1097/MOH.0000000000000327
Ginzberg, M. B., Kafri, R. & Kirschner, M. On being the right (cell) size. Science 348, 1245075 (2015).
pubmed: 25977557 pmcid: 4533982 doi: 10.1126/science.1245075
Björklund, M. Cell size homeostasis: Metabolic control of growth and cell division. Biochimica et. Biophysica Acta (BBA) - Mol. Cell Res. 1866, 409–417 (2019).
doi: 10.1016/j.bbamcr.2018.10.002
Dolznig, H., Grebien, F., Sauer, T., Beug, H. & Müllner, E. W. Evidence for a size-sensing mechanism in animal cells. Nat. Cell Biol. 6, 899–905 (2004).
pubmed: 15322555 doi: 10.1038/ncb1166
Narla, A. & Ebert, B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).
pubmed: 20194897 pmcid: 2858486 doi: 10.1182/blood-2009-10-178129
Kelley, L. L. et al. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood 82, 2340–2352 (1993).
pubmed: 8400286 doi: 10.1182/blood.V82.8.2340.2340
Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228–3240.e3227 (2019).
pubmed: 31189107 pmcid: 6579117 doi: 10.1016/j.celrep.2019.05.046
Timmer, T. et al. Associations between single nucleotide polymorphisms and erythrocyte parameters in humans: a systematic literature review. Mutat. Res. 779, 58–67 (2019).
doi: 10.1016/j.mrrev.2019.01.002
Read, R. W. et al. GWAS and PheWAS of red blood cell components in a Northern Nevadan cohort. PLoS ONE 14, e0218078 (2019).
pubmed: 31194788 pmcid: 6564422 doi: 10.1371/journal.pone.0218078
Seiki, T. et al. Association of genetic polymorphisms with erythrocyte traits: verification of SNPs reported in a previous GWAS in a Japanese population. Gene 642, 172–177 (2018).
pubmed: 29133146 doi: 10.1016/j.gene.2017.11.031
Tumburu, L. & Thein, S. L. Genetic control of erythropoiesis. Curr. Opin. Hematol. 24, 173–182 (2017).
pubmed: 28212192 doi: 10.1097/MOH.0000000000000333
Pavlović-Kentera, V., Bogdanović, M., Miladinović, D. & Slavković, V. Erythropoietin level and macrocytosis in patients with chronic pulmonary insufficiency. Respiration 34, 213–219 (1977).
pubmed: 897371 doi: 10.1159/000193828
Tsantes, A. E. et al. Red cell macrocytosis in hypoxemic patients with chronic obstructive pulmonary disease. Respir. Med. 98, 1117–1123 (2004).
pubmed: 15526813 doi: 10.1016/j.rmed.2004.04.002
Chanarin, I., McFadyen, I. R. & Kyle, R. The physiological macrocytosis of pregnancy. Br. J. Obstet. Gynaecol. 84, 504–508 (1977).
pubmed: 911706 doi: 10.1111/j.1471-0528.1977.tb12634.x
Hoffbrand, V. & Provan, D. ABC of clinical haematology. Macrocytic Anaemias Bmj 314, 430–433 (1997).
pubmed: 9040391 doi: 10.1136/bmj.314.7078.430
Yčas, J. W., Horrow, J. C. & Horne, B. D. Persistent increase in red cell size distribution width after acute diseases: a biomarker of hypoxemia? Clin. Chim. Acta 448, 107–117 (2015).
pubmed: 26096256 doi: 10.1016/j.cca.2015.05.021
Schepens, T., De Dooy, J. J., Verbrugghe, W. & Jorens, P. G. Red cell distribution width (RDW) as a biomarker for respiratory failure in a pediatric ICU. J. Inflamm. 14, 12 (2017).
doi: 10.1186/s12950-017-0160-9
Geissler, E. N., McFarland, E. C. & Russell, E. S. Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 97, 337–361 (1981).
pubmed: 7274658 pmcid: 1214397 doi: 10.1093/genetics/97.2.337
Waskow, C., Terszowski, G., Costa, C., Gassmann, M. & Rodewald, H. R. Rescue of lethal c-KitW/W mice by erythropoietin. Blood 104, 1688–1695 (2004).
pubmed: 15178584 doi: 10.1182/blood-2004-04-1247
Kabaya, K. et al. Improvement of anemia in W/WV mice by recombinant human erythropoietin (rHuEPO) mediated through EPO receptors with lowered affinity. Life Sci. 57, 1067–1076 (1995).
pubmed: 7658914 doi: 10.1016/0024-3205(95)02052-K
Benesch, R. & Benesch, R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys. Res. Commun. 26, 162–167 (1967).
pubmed: 6030262 doi: 10.1016/0006-291X(67)90228-8
Bunn, H. F. Evolution of mammalian hemoglobin function. Blood 58, 189–197 (1981).
pubmed: 7018619 doi: 10.1182/blood.V58.2.189.189
Garby, L. & De Verdier, C. H. Affinity of human hemoglobin A to 2,3-diphosphoglycerate. Effect of hemoglobin concentration and of pH. Scand. J. Clin. Lab Invest. 27, 345–350 (1971).
pubmed: 5556603 doi: 10.3109/00365517109080229
Hu, X., Eastman, A. E. & Guo, S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett. 593, 2840–2852 (2019).
pubmed: 31562821 doi: 10.1002/1873-3468.13625
Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Garnier, S. viridis: Default Color Maps from ‘matplotlib’ (2018).
Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
doi: 10.1002/bimj.200810425
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

Auteurs

Daniel Hidalgo (D)

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Jacob Bejder (J)

Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.

Ramona Pop (R)

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.

Kyle Gellatly (K)

Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Yung Hwang (Y)

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

S Maxwell Scalf (S)

Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA.

Anna E Eastman (AE)

Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA.

Jane-Jane Chen (JJ)

Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA.

Lihua Julie Zhu (LJ)

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Jules A A C Heuberger (JAAC)

Centre for Human Drug Research, Leiden, The Netherlands.

Shangqin Guo (S)

Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA.

Mark J Koury (MJ)

Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.

Nikolai Baastrup Nordsborg (NB)

Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark. nbn@nexs.ku.dk.

Merav Socolovsky (M)

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA. merav.socolovsky@umassmed.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH