EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis.
Adult
Animals
Antigens, CD
/ metabolism
CD4 Antigens
/ metabolism
Cell Cycle
Cell Differentiation
Cell Nucleus
/ drug effects
Cell Size
Cell Survival
Cyclin-Dependent Kinase Inhibitor p27
/ metabolism
Embryo, Mammalian
/ metabolism
Erythroblasts
/ cytology
Erythrocytes
/ cytology
Erythropoiesis
Erythropoietin
/ administration & dosage
Female
Fetus
/ metabolism
Healthy Volunteers
Humans
Iron
/ metabolism
Liver
/ embryology
Male
Mice, Inbred C57BL
Models, Biological
Protein Serine-Threonine Kinases
/ metabolism
Receptors, Erythropoietin
/ metabolism
Receptors, Transferrin
/ metabolism
Reticulocytes
/ cytology
Signal Transduction
bcl-X Protein
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
17 12 2021
17 12 2021
Historique:
received:
17
11
2020
accepted:
19
11
2021
entrez:
18
12
2021
pubmed:
19
12
2021
medline:
12
1
2022
Statut:
epublish
Résumé
The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor
Identifiants
pubmed: 34921133
doi: 10.1038/s41467-021-27562-4
pii: 10.1038/s41467-021-27562-4
pmc: PMC8683474
doi:
Substances chimiques
Antigens, CD
0
CD4 Antigens
0
CD71 antigen
0
Receptors, Erythropoietin
0
Receptors, Transferrin
0
bcl-X Protein
0
Erythropoietin
11096-26-7
Cyclin-Dependent Kinase Inhibitor p27
147604-94-2
Iron
E1UOL152H7
Protein Serine-Threonine Kinases
EC 2.7.11.1
eIF2alpha kinase, mouse
EC 2.7.11.1
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7334Subventions
Organisme : NIGMS NIH HHS
ID : R25 GM113686
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK087984
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK120639
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK100915
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL141402
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Kassebaum, N. J. et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624 (2014).
pubmed: 24297872
pmcid: 3907750
doi: 10.1182/blood-2013-06-508325
D’Andrea, A. D., Fasman, G. D. & Lodish, H. F. Erythropoietin receptor and interleukin-2 receptor b chain: a new receptor family. Cell 58, 1023–1024 (1989).
pubmed: 2550142
doi: 10.1016/0092-8674(89)90499-6
Stephenson, J. R., Axelrad, A. A., McLeod, D. L. & Shreeve, M. M. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68, 1542–1546 (1971).
pubmed: 4104431
pmcid: 389236
doi: 10.1073/pnas.68.7.1542
Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).
pubmed: 29466336
pmcid: 5899604
doi: 10.1038/nature25741
Wu, H., Liu, X., Jaenisch, R. & Lodish, H. F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59–67 (1995).
pubmed: 7553874
doi: 10.1016/0092-8674(95)90234-1
Koury, M. J., Bondurant, M. C., Graber, S. E. & Sawyer, S. T. Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta. J. Clin. Invest. 82, 154–159 (1988).
pubmed: 3392205
pmcid: 303489
doi: 10.1172/JCI113564
Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248, 378–381 (1990).
pubmed: 2326648
doi: 10.1126/science.2326648
Koury, M. J. & Bondurant, M. C. The molecular mechanism of erythropoietin action. Eur. J. Biochem. 210, 649–663 (1992).
pubmed: 1483451
doi: 10.1111/j.1432-1033.1992.tb17466.x
Koulnis, M., Porpiglia, E., Hidalgo, D. & Socolovsky, M. In A Systems Biology Approach to Blood Vol. 844 (eds. Corey, S. J., Kimmel, M. & Leonard, J. N.) 37–58 (Springer New York, 2014).
Wickrema, A., Bondurant, M. C. & Krantz, S. B. Abundance and stability of erythropoietin receptor mRNA in mouse erythroid progenitor cells. Blood 78, 2269–2275 (1991).
pubmed: 1657247
doi: 10.1182/blood.V78.9.2269.2269
Broudy, V. C., Lin, N., Brice, M., Nakamoto, B. & Papayannopoulou, T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood 77, 2583–2590 (1991).
pubmed: 1646044
doi: 10.1182/blood.V77.12.2583.2583
Zhang, J., Socolovsky, M., Gross, A. W. & Lodish, H. F. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102, 3938–3946 (2003).
pubmed: 12907435
doi: 10.1182/blood-2003-05-1479
Kieran, M. W., Perkins, A., Orkin, S. & Zon, L. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc. Natl. Acad. Sci. USA 93, 9126–9131 (1996).
pubmed: 8799165
pmcid: 38606
doi: 10.1073/pnas.93.17.9126
Lin, C. S., Lim, S. K., D’Agati, V. & Costantini, F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev. 10, 154–164 (1996).
pubmed: 8566749
doi: 10.1101/gad.10.2.154
Iscove, N. N. The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet. 10, 323–334 (1977).
pubmed: 884703
Fang, J. et al. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts. Blood 110, 2361–2370 (2007).
pubmed: 17548578
pmcid: 1988929
doi: 10.1182/blood-2006-12-063503
Ferro, F. Jr., Kozak, S. L., Hoatlin, M. E. & Kabat, D. Cell surface site for mitogenic interaction of erythropoietin receptors with the membrane glycoprotein encoded by Friend erythroleukemia virus. J. Biol. Chem. 268, 5741–5747 (1993).
pubmed: 8449938
doi: 10.1016/S0021-9258(18)53381-0
Spivak, J. L. et al. Cell cycle-specific behavior of erythropoietin. Exp. Hematol. 24, 141–150 (1996).
pubmed: 8641335
von Lindern, M. et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94, 550–559 (1999).
doi: 10.1182/blood.V94.2.550
Malik, J., Kim, A. R., Tyre, K. A., Cherukuri, A. R. & Palis, J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica 98, 1778–1787 (2013).
pubmed: 23894012
pmcid: 3815180
doi: 10.3324/haematol.2013.087361
Socolovsky, M., Dusanter-Fourt, I. & Lodish, H. F. The Prolactin receptor, as well as severly truncated erythropoietin receptors support differentiation of erythroid progenitors. J. Biol. Chem. 272, 14009–14013 (1997).
pubmed: 9162017
doi: 10.1074/jbc.272.22.14009
Socolovsky, M., Fallon, A. E. J. & Lodish, H. F. The prolactin receptor rescues EpoR−/− erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood 92, 1491–1496 (1998).
pubmed: 9716574
doi: 10.1182/blood.V92.5.1491
Socolovsky, M., Lodish, H. F. & Daley, G. Q. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc. Natl. Acad. Sci. USA 95, 6573–6575 (1998).
pubmed: 9618452
pmcid: 33861
doi: 10.1073/pnas.95.12.6573
Brisken, C., Socolovsky, M., Lodish, H. F. & Weinberg, R. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. PNAS 99, 14241–14245 (2002).
pubmed: 12381781
pmcid: 137868
doi: 10.1073/pnas.222549599
Kadri, Z. et al. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol. Cell Biol. 25, 7412–7422 (2005).
pubmed: 16107690
pmcid: 1190299
doi: 10.1128/MCB.25.17.7412-7422.2005
Hwang, Y. et al. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch. Sci. Adv. 3, e1700298 (2017).
pubmed: 28560351
pmcid: 5446218
doi: 10.1126/sciadv.1700298
Eastman, A. E. et al. Resolving cell cycle speed in one snapshot with a live-cell fluorescent reporter. Cell Rep. 31, 107804 (2020).
pubmed: 32579930
pmcid: 7418154
doi: 10.1016/j.celrep.2020.107804
Hwang, Y., Hidalgo, D. & Socolovsky, M. The shifting shape and functional specializations of the cell cycle during lineage development. Wiley Interdiscip Rev. Syst. Biol. Med. 13, e1504 (2020).
Humbert, P. O. et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol. Cell 6, 281–291 (2000).
pubmed: 10983976
doi: 10.1016/S1097-2765(00)00029-0
Sankaran, V. G. et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 26, 2075–2087 (2012).
pubmed: 22929040
pmcid: 3444733
doi: 10.1101/gad.197020.112
Jayapal, S. R. et al. Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica 100, 431–438 (2015).
pubmed: 25616574
pmcid: 4380715
doi: 10.3324/haematol.2014.106468
Burns, E. R., Reed, L. J. & Wenz, B. Volumetric erythrocyte macrocytosis induced by hydroxyurea. Am. J. Clin. Pathol. 85, 337–341 (1986).
pubmed: 3790210
doi: 10.1093/ajcp/85.3.337
Suragani, R. N. et al. Heme-regulated eIF2alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood 119, 5276–5284 (2012).
pubmed: 22498744
pmcid: 3369616
doi: 10.1182/blood-2011-10-388132
Chen, J. J. & Zhang, S. Heme-regulated eIF2alpha kinase in erythropoiesis and hemoglobinopathies. Blood 134, 1697–1707 (2019).
pubmed: 31554636
pmcid: 6856985
doi: 10.1182/blood.2019001915
Zhang, S. et al. HRI coordinates translation by eIF2alphaP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency. Blood 131, 450–461 (2018).
pubmed: 29101239
pmcid: 5790126
doi: 10.1182/blood-2017-08-799908
Silva, M. et al. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 88, 1576–1582 (1996).
pubmed: 8781412
doi: 10.1182/blood.V88.5.1576.1576
Motoyama, N., Kimura, T., Takahashi, T., Watanabe, T. & Nakano, T. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J. Exp. Med. 189, 1691–1698 (1999).
pubmed: 10359572
pmcid: 2193080
doi: 10.1084/jem.189.11.1691
Socolovsky, M., Fallon, A. E. J., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a
pubmed: 10428030
doi: 10.1016/S0092-8674(00)81013-2
Koulnis, M. et al. Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. Blood 119, 1228–1239 (2012).
pubmed: 22086418
pmcid: 3277355
doi: 10.1182/blood-2011-07-365346
Pop, R. et al. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol. 8, e1000484 (2010).
von Lindern, M., Schmidt, U. & Beug, H. Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton’s tyrosine kinase. Cell Cycle 3, 876–879 (2004).
doi: 10.4161/cc.3.7.1001
Umemura, T., al-Khatti, A., Donahue, R. E., Papayannopoulou, T. & Stamatoyannopoulos, G. Effects of interleukin-3 and erythropoietin on in vivo erythropoiesis and F-cell formation in primates. Blood 74, 1571–1576 (1989).
pubmed: 2477080
doi: 10.1182/blood.V74.5.1571.1571
Garrick, L. M. et al. Ferric-salicylaldehyde isonicotinoyl hydrazone, a synthetic iron chelate, alleviates defective iron utilization by reticulocytes of the belgrade rat. J. Cell. Physiol. 146, 460–465 (1991).
pubmed: 2022700
doi: 10.1002/jcp.1041460317
Nyholm, S. et al. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J. Biol. Chem. 268, 26200–26205 (1993).
pubmed: 8253740
doi: 10.1016/S0021-9258(19)74300-2
Eriksson, S., Munch-Petersen, B., Johansson, K. & Ecklund, H. Structure and function of cellular deoxyribonucleoside kinases. Cell. Mol. Life Sci. CMLS 59, 1327–1346 (2002).
pubmed: 12363036
doi: 10.1007/s00018-002-8511-x
Zhu, L. & Skoultchi, A. I. Coordinating cell proliferation and differentiation. Curr. Opin. Genet Dev. 11, 91–97 (2001).
pubmed: 11163157
doi: 10.1016/S0959-437X(00)00162-3
Dalton, S. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 25, 592–600 (2015).
pubmed: 26410405
pmcid: 4584407
doi: 10.1016/j.tcb.2015.07.007
Quelle, F. W. Cytokine signaling to the cell cycle. Immunologic Res. 39, 173–184 (2007).
doi: 10.1007/s12026-007-0080-5
Khaled, A. R. et al. Cytokine-driven cell cycling is mediated through Cdc25A. J. Cell Biol. 169, 755–763 (2005).
pubmed: 15928203
pmcid: 2171622
doi: 10.1083/jcb.200409099
Matsumura, I. et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J. 18, 1367–1377 (1999).
pubmed: 10064602
pmcid: 1171226
doi: 10.1093/emboj/18.5.1367
Nagao, T. & Hirokawa, M. Diagnosis and treatment of macrocytic anemias in adults. J. Gen. Fam. Med. 18, 200–204 (2017).
pubmed: 29264027
pmcid: 5689413
doi: 10.1002/jgf2.31
Han, A. P. et al. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918 (2001).
pubmed: 11726526
pmcid: 125753
doi: 10.1093/emboj/20.23.6909
Liu, Y. et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108, 123–133 (2006).
pubmed: 16527892
pmcid: 1895827
doi: 10.1182/blood-2005-11-4458
Chen, K. et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA 106, 17413–17418 (2009).
pubmed: 19805084
pmcid: 2762680
doi: 10.1073/pnas.0909296106
Kalfa, T. & McGrath, K. E. Analysis of erythropoiesis using imaging flow cytometry. Methods Mol. Biol. 1698, 175–192 (2018).
pubmed: 29076090
doi: 10.1007/978-1-4939-7428-3_10
McGrath, K. E., Bushnell, T. P. & Palis, J. Multispectral imaging of hematopoietic cells: where flow meets morphology. J. Immunol. Methods 336, 91–97 (2008).
pubmed: 18539294
pmcid: 2529019
doi: 10.1016/j.jim.2008.04.012
Erslev, A. J., Wilson, J. & Caro, J. Erythropoietin titers in anemic, nonuremic patients. J. Lab Clin. Med. 109, 429–433 (1987).
pubmed: 3102659
Kojima, S., Matsuyama, T. & Kodera, Y. Circulating erythropoietin in patients with acquired aplastic anaemia. Acta Haematol. 94, 117–122 (1995).
pubmed: 7502626
doi: 10.1159/000203992
Dey, S., Curtis, D. J., Jane, S. M. & Brandt, S. J. The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol. Cell Biol. 30, 2181–2192 (2010).
pubmed: 20194619
pmcid: 2863590
doi: 10.1128/MCB.01441-09
Chagraoui, H. et al. SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood 118, 723–735 (2011).
pubmed: 21596846
doi: 10.1182/blood-2011-01-328765
Hsieh, F. F. et al. Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase. Blood 96, 2746–2754 (2000).
pubmed: 11023508
doi: 10.1182/blood.V96.8.2746.h8002746_2746_2754
Rylski, M. et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol. Cell Biol. 23, 5031–5042 (2003).
pubmed: 12832487
pmcid: 162202
doi: 10.1128/MCB.23.14.5031-5042.2003
Bouscary, D. et al. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 101, 3436–3443 (2003).
pubmed: 12506011
doi: 10.1182/blood-2002-07-2332
Gnanapragasam, M. N. et al. EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128, 1631–1641 (2016).
pubmed: 27480112
pmcid: 5034741
doi: 10.1182/blood-2016-03-706671
Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248 (1994).
pubmed: 8106507
doi: 10.1016/S0021-9258(17)37680-9
Porpiglia, E., Hidalgo, D., Koulnis, M., Tzafriri, A. R. & Socolovsky, M. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities. PLoS Biol. 10, e1001383 (2012).
pubmed: 22969412
pmcid: 3433736
doi: 10.1371/journal.pbio.1001383
Kuhrt, D. & Wojchowski, D. M. Emerging EPO and EPO receptor regulators and signal transducers. Blood 125, 3536–3541 (2015).
pubmed: 25887776
pmcid: 4458796
doi: 10.1182/blood-2014-11-575357
Lodish, H. F., Ghaffari, S., Socolovsky, M., Tong, W. & Zhang, J. In Erythropoietins, Erythropoietic Factors, and Erythropoiesis: Molecular, Cellular, Preclinical, and Clinical Biology (eds. Elliott, S. G., Foote, M. & Molineux, G.) 155–174 (Birkhäuser, Basel, 2009).
Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a(
pubmed: 11719363
doi: 10.1182/blood.V98.12.3261
Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).
pubmed: 9660836
doi: 10.1074/jbc.273.29.18623
Heuberger, J. et al. Effects of erythropoietin on cycling performance of well trained cyclists: a double-blind, randomised, placebo-controlled trial. Lancet Haematol. 4, e374–e386 (2017).
pubmed: 28669689
doi: 10.1016/S2352-3026(17)30105-9
Bosch, F. H. et al. Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation. Blood 79, 254–260 (1992).
pubmed: 1728314
doi: 10.1182/blood.V79.1.254.254
Willekens, F. L. et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 101, 747–751 (2003).
pubmed: 12393566
doi: 10.1182/blood-2002-02-0500
Gifford, S. C., Derganc, J., Shevkoplyas, S. S., Yoshida, T. & Bitensky, M. W. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br. J. Haematol. 135, 395–404 (2006).
pubmed: 16989660
doi: 10.1111/j.1365-2141.2006.06279.x
Franco, R. S. et al. Changes in the properties of normal human red blood cells during in vivo aging. Am. J. Hematol. 88, 44–51 (2013).
pubmed: 23115087
doi: 10.1002/ajh.23344
d’Onofrio, G. et al. Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia. Blood 85, 818–823 (1995).
pubmed: 7833482
doi: 10.1182/blood.V85.3.818.bloodjournal853818
Socolovsky, M. et al. Negative autoregulation by FAS mediates robust fetal erythropoiesis. PLoS Biol. 5, e252 (2007).
pubmed: 17896863
pmcid: 1988857
doi: 10.1371/journal.pbio.0050252
Thomas, P. Making sense of snapshot data: ergodic principle for clonal cell populations. J. R. Soc. Interface 14, 20170467 (2017).
Shearstone, J. R. et al. Global DNA demethylation during mouse erythropoiesis in vivo. Science 334, 799–802 (2011).
pubmed: 22076376
pmcid: 3230325
doi: 10.1126/science.1207306
Panzenböck, B., Bartunek, P., Mapara, M. Y. & Zenke, M. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92, 3658–3668 (1998).
pubmed: 9808559
doi: 10.1182/blood.V92.10.3658
Gnanapragasam, M. N. & Bieker, J. J. Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr. Opin. Hematol. 24, 183–190 (2017).
pubmed: 28157724
pmcid: 5523457
doi: 10.1097/MOH.0000000000000327
Ginzberg, M. B., Kafri, R. & Kirschner, M. On being the right (cell) size. Science 348, 1245075 (2015).
pubmed: 25977557
pmcid: 4533982
doi: 10.1126/science.1245075
Björklund, M. Cell size homeostasis: Metabolic control of growth and cell division. Biochimica et. Biophysica Acta (BBA) - Mol. Cell Res. 1866, 409–417 (2019).
doi: 10.1016/j.bbamcr.2018.10.002
Dolznig, H., Grebien, F., Sauer, T., Beug, H. & Müllner, E. W. Evidence for a size-sensing mechanism in animal cells. Nat. Cell Biol. 6, 899–905 (2004).
pubmed: 15322555
doi: 10.1038/ncb1166
Narla, A. & Ebert, B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).
pubmed: 20194897
pmcid: 2858486
doi: 10.1182/blood-2009-10-178129
Kelley, L. L. et al. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood 82, 2340–2352 (1993).
pubmed: 8400286
doi: 10.1182/blood.V82.8.2340.2340
Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228–3240.e3227 (2019).
pubmed: 31189107
pmcid: 6579117
doi: 10.1016/j.celrep.2019.05.046
Timmer, T. et al. Associations between single nucleotide polymorphisms and erythrocyte parameters in humans: a systematic literature review. Mutat. Res. 779, 58–67 (2019).
doi: 10.1016/j.mrrev.2019.01.002
Read, R. W. et al. GWAS and PheWAS of red blood cell components in a Northern Nevadan cohort. PLoS ONE 14, e0218078 (2019).
pubmed: 31194788
pmcid: 6564422
doi: 10.1371/journal.pone.0218078
Seiki, T. et al. Association of genetic polymorphisms with erythrocyte traits: verification of SNPs reported in a previous GWAS in a Japanese population. Gene 642, 172–177 (2018).
pubmed: 29133146
doi: 10.1016/j.gene.2017.11.031
Tumburu, L. & Thein, S. L. Genetic control of erythropoiesis. Curr. Opin. Hematol. 24, 173–182 (2017).
pubmed: 28212192
doi: 10.1097/MOH.0000000000000333
Pavlović-Kentera, V., Bogdanović, M., Miladinović, D. & Slavković, V. Erythropoietin level and macrocytosis in patients with chronic pulmonary insufficiency. Respiration 34, 213–219 (1977).
pubmed: 897371
doi: 10.1159/000193828
Tsantes, A. E. et al. Red cell macrocytosis in hypoxemic patients with chronic obstructive pulmonary disease. Respir. Med. 98, 1117–1123 (2004).
pubmed: 15526813
doi: 10.1016/j.rmed.2004.04.002
Chanarin, I., McFadyen, I. R. & Kyle, R. The physiological macrocytosis of pregnancy. Br. J. Obstet. Gynaecol. 84, 504–508 (1977).
pubmed: 911706
doi: 10.1111/j.1471-0528.1977.tb12634.x
Hoffbrand, V. & Provan, D. ABC of clinical haematology. Macrocytic Anaemias Bmj 314, 430–433 (1997).
pubmed: 9040391
doi: 10.1136/bmj.314.7078.430
Yčas, J. W., Horrow, J. C. & Horne, B. D. Persistent increase in red cell size distribution width after acute diseases: a biomarker of hypoxemia? Clin. Chim. Acta 448, 107–117 (2015).
pubmed: 26096256
doi: 10.1016/j.cca.2015.05.021
Schepens, T., De Dooy, J. J., Verbrugghe, W. & Jorens, P. G. Red cell distribution width (RDW) as a biomarker for respiratory failure in a pediatric ICU. J. Inflamm. 14, 12 (2017).
doi: 10.1186/s12950-017-0160-9
Geissler, E. N., McFarland, E. C. & Russell, E. S. Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 97, 337–361 (1981).
pubmed: 7274658
pmcid: 1214397
doi: 10.1093/genetics/97.2.337
Waskow, C., Terszowski, G., Costa, C., Gassmann, M. & Rodewald, H. R. Rescue of lethal c-KitW/W mice by erythropoietin. Blood 104, 1688–1695 (2004).
pubmed: 15178584
doi: 10.1182/blood-2004-04-1247
Kabaya, K. et al. Improvement of anemia in W/WV mice by recombinant human erythropoietin (rHuEPO) mediated through EPO receptors with lowered affinity. Life Sci. 57, 1067–1076 (1995).
pubmed: 7658914
doi: 10.1016/0024-3205(95)02052-K
Benesch, R. & Benesch, R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys. Res. Commun. 26, 162–167 (1967).
pubmed: 6030262
doi: 10.1016/0006-291X(67)90228-8
Bunn, H. F. Evolution of mammalian hemoglobin function. Blood 58, 189–197 (1981).
pubmed: 7018619
doi: 10.1182/blood.V58.2.189.189
Garby, L. & De Verdier, C. H. Affinity of human hemoglobin A to 2,3-diphosphoglycerate. Effect of hemoglobin concentration and of pH. Scand. J. Clin. Lab Invest. 27, 345–350 (1971).
pubmed: 5556603
doi: 10.3109/00365517109080229
Hu, X., Eastman, A. E. & Guo, S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett. 593, 2840–2852 (2019).
pubmed: 31562821
doi: 10.1002/1873-3468.13625
Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Garnier, S. viridis: Default Color Maps from ‘matplotlib’ (2018).
Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
doi: 10.1002/bimj.200810425
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).