Conversion of lignin-derived 3-methoxycatechol to the natural product purpurogallin using bacterial P450 GcoAB and laccase CueO.
Biosynthesis
Lignin
Purpurogallin
Pyrogallol
Whole cell
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
22
09
2021
accepted:
11
12
2021
revised:
02
12
2021
pubmed:
1
1
2022
medline:
20
1
2022
entrez:
31
12
2021
Statut:
ppublish
Résumé
Purpurogallin is a natural benzotropolone extracted from Quercus spp, which has antioxidant, anticancer, and anti-inflammatory properties. Purpurogallin is typically synthesized from pyrogallol using enzymatic or metal catalysts, neither economically feasible nor environmentally friendly. 3-Methoxycatechol (3-MC) is a lignin-derived renewable chemical with the potential to be a substrate for the biosynthesis of purpurogallin. In this study, we designed a pathway to produce purpurogallin from 3-MC. We first characterized four bacterial laccases and identified the laccase CueO from Escherichia coli, which converts pyrogallol to purpurogallin. Then, we used CueO and the P450 GcoAB reported to convert 3-MC to pyrogallol, to construct a method for producing purpurogallin directly from 3-MC. A total of 0.21 ± 0.05 mM purpurogallin was produced from 5 mM 3-MC by whole-cell conversion. This study provides a new method to enable efficient and sustainable synthesis of purpurogallin and offers new insights into lignin valorization. KEY POINTS: • Screening four bacterial laccases for converting pyrogallol to purpurogallin. • Laccase CueO from Escherichia coli presenting the activity for purpurogallin yield. • A novel pathway for converting lignin-derived 3-methoxycatechol to purpurogallin.
Identifiants
pubmed: 34971410
doi: 10.1007/s00253-021-11738-5
pii: 10.1007/s00253-021-11738-5
doi:
Substances chimiques
Benzocycloheptenes
0
Biological Products
0
Catechols
0
Lignin
9005-53-2
Laccase
EC 1.10.3.2
3-methoxycatechol
IC13U5393C
purpurogallin
L3Z7U4N28P
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
593-603Subventions
Organisme : National Natural Science Foundation of China
ID : 31870071
Organisme : Science and Technology Commission of Shanghai Municipality
ID : 18JC1413600
Organisme : Oceanic Interdisciplinary Program of Shanghai Jiao Tong University
ID : SL2020MS028
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, Garcia-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Liden G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001
doi: 10.1016/j.biotechadv.2016.10.001
pubmed: 27720980
Abou-Karam M, Shier WT (1999) Inhibition of oncogene product enzyme activity as an approach to cancer chemoprevention. Tyrosine-specific protein kinase inhibition by purpurogallin from Quercus sp. nutgall. Phytother Res 13(4):337–40. https://doi.org/10.1002/(sici)1099-1573(199906)13:4%3c337::aid-ptr451%3e3.0.co;2-j
doi: 10.1002/(sici)1099-1573(199906)13:4<337::aid-ptr451>3.0.co;2-j
pubmed: 10404543
Anraku Y, Heppel LA (1967) On the nature of the changes induced in Escherichia coli by osmotic shock. J Biol Chem 242(10):2561–2569
doi: 10.1016/S0021-9258(18)96000-X
Arregui L, Ayala M, Gomez-Gil X, Gutierrez-Soto G, Hernandez-Luna CE, de Los H, Santos M, Levin L, Rojo-Dominguez A, Romero-Martinez D, Saparrat MCN, Trujillo-Roldan MA, Valdez-Cruz NA (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18(1):200. https://doi.org/10.1186/s12934-019-1248-0
doi: 10.1186/s12934-019-1248-0
pubmed: 31727078
pmcid: 6854816
Asmadi M, Kawamoto H, Saka S (2011) Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates. J Anal Appl Pyrolysis 92(1):76–87. https://doi.org/10.1016/j.jaap.2011.04.012
doi: 10.1016/j.jaap.2011.04.012
Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301(5638):1383–1387. https://doi.org/10.1126/science.1085950
doi: 10.1126/science.1085950
pubmed: 12958362
Chauhan S, Kang TJ (2018) Soluble expression of horseradish peroxidase in Escherichia coli and its facile activation. J Biosci Bioeng 126(4):431–435. https://doi.org/10.1016/j.jbiosc.2018.04.004
doi: 10.1016/j.jbiosc.2018.04.004
pubmed: 29691194
Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):323. https://doi.org/10.1007/s13205-017-0955-7
doi: 10.1007/s13205-017-0955-7
pubmed: 28955620
pmcid: 5602783
Chen WH, Wang CW, Kumar G, Rousset P, Hsieh TH (2018) Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Bioresour Technol 259:469–473. https://doi.org/10.1016/j.biortech.2018.03.033
doi: 10.1016/j.biortech.2018.03.033
pubmed: 29580728
Cheng K, Wang X, Zhang S, Yin H (2012) Discovery of small-molecule inhibitors of the TLR1/TLR2 complex. Angew Chem Int Ed Engl 51(49):12246–12249. https://doi.org/10.1002/anie.201204910
doi: 10.1002/anie.201204910
pubmed: 22969053
pmcid: 3510333
Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245. https://doi.org/10.1093/nar/gky354
doi: 10.1093/nar/gky354
pubmed: 29762716
pmcid: 6030908
Djoko KY, Chong LX, Wedd AG, Xiao Z (2010) Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc 132(6):2005–2015. https://doi.org/10.1021/ja9091903
doi: 10.1021/ja9091903
pubmed: 20088522
Dong Y, Lu X, Hu C, Li L, Hu Q, Wang D, Xu C, Gu X (2020) Pyrolysis products distribution of enzymatic hydrolysis lignin with/without steam explosion treatment by Py-GC/MS. Catalysts 10(2):187. https://doi.org/10.3390/catal10020187
doi: 10.3390/catal10020187
Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647
doi: 10.1371/journal.pone.0003647
pubmed: 18985154
pmcid: 2574415
Erdocia X, Prado R, Corcuera MÁ, Labidi J (2014) Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenergy 66:379–386. https://doi.org/10.1016/j.biombioe.2014.03.021
doi: 10.1016/j.biombioe.2014.03.021
Ferlin F, Marini A, Ascani N, Ackermann L, Lanari D, Vaccaro L (2019) Heterogeneous manganese-catalyzed oxidase C−H/C−O cyclization to access pharmaceutically active compounds. ChemCatChem 12(2):449–454. https://doi.org/10.1002/cctc.201901659
doi: 10.1002/cctc.201901659
Gosslau A, Li S, Zachariah E, Ho C-T (2018) Therapeutic connection between black tea theaflavins and their benzotropolone core structure. Curr Pharmacol Rep 4(6):447–452. https://doi.org/10.1007/s40495-018-0157-y
doi: 10.1007/s40495-018-0157-y
Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286(5):902–908. https://doi.org/10.1006/bbrc.2001.5474
doi: 10.1006/bbrc.2001.5474
pubmed: 11527384
Gundinger T, Spadiut O (2017) A comparative approach to recombinantly produce the plant enzyme horseradish peroxidase in Escherichia coli. J Biotechnol 248:15–24. https://doi.org/10.1016/j.jbiotec.2017.03.003
doi: 10.1016/j.jbiotec.2017.03.003
pubmed: 28288816
pmcid: 5453243
Gupta N, Farinas ET (2010) Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng Des Sel 23(8):679–682. https://doi.org/10.1093/protein/gzq036
doi: 10.1093/protein/gzq036
pubmed: 20551082
Ihssen J, Reiss R, Luchsinger R, Thony-Meyer L, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep 5:10465. https://doi.org/10.1038/srep10465
doi: 10.1038/srep10465
pubmed: 26068013
pmcid: 4464401
Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5(3):318–332. https://doi.org/10.1111/j.1751-7915.2011.00273.x
doi: 10.1111/j.1751-7915.2011.00273.x
pubmed: 21791030
pmcid: 3821676
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514. https://doi.org/10.1128/AEM.04023-14
doi: 10.1128/AEM.04023-14
pubmed: 25636838
pmcid: 4357945
Jiang W, Lyu G, Wu S, Lucia LA (2016) Near-critical water hydrothermal transformation of industrial lignins to high value phenolics. J Anal Appl Pyrolysis 120:297–303. https://doi.org/10.1016/j.jaap.2016.05.017
doi: 10.1016/j.jaap.2016.05.017
Kim C, Lorenz WW, Hoopes JT, Dean JF (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183(16):4866–4875. https://doi.org/10.1128/JB.183.16.4866-4875.2001
doi: 10.1128/JB.183.16.4866-4875.2001
pubmed: 11466290
pmcid: 99541
Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M (2003) Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 46(20):4259–4264. https://doi.org/10.1021/jm030190z
doi: 10.1021/jm030190z
pubmed: 13678404
Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99(4):1611–1625. https://doi.org/10.1007/s00253-014-6346-7
doi: 10.1007/s00253-014-6346-7
pubmed: 25575885
pmcid: 4322221
Kudanga T, Le Roes-Hill M (2014) Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98(15):6525–6542. https://doi.org/10.1007/s00253-014-5810-8
doi: 10.1007/s00253-014-5810-8
pubmed: 24841120
Kudanga T, Nemadziva B, Le Roes-Hill M (2017) Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 101(1):13–33. https://doi.org/10.1007/s00253-016-7987-5
doi: 10.1007/s00253-016-7987-5
pubmed: 27872999
Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12. https://doi.org/10.1186/1754-1611-5-12
doi: 10.1186/1754-1611-5-12
pubmed: 21933410
pmcid: 3189095
Liu Z, Xie T, Zhong Q, Wang G (2016) Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Acta Crystallogr F Struct Biol Commun 72(Pt 4):328–335. https://doi.org/10.1107/S2053230X1600426X
doi: 10.1107/S2053230X1600426X
pubmed: 27050268
pmcid: 4822991
Liu Y, Luo G, Ngo HH, Guo W, Zhang S (2020) Advances in thermostable laccase and its current application in lignin-first biorefinery: a review. Bioresour Technol 298:122511. https://doi.org/10.1016/j.biortech.2019.122511
doi: 10.1016/j.biortech.2019.122511
pubmed: 31839492
Mallinson SJB, Machovina MM, Silveira RL, Garcia-Borras M, Gallup N, Johnson CW, Allen MD, Skaf MS, Crowley MF, Neidle EL, Houk KN, Beckham GT, DuBois JL, McGeehan JE (2018) A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat Commun 9(1):2487. https://doi.org/10.1038/s41467-018-04878-2
doi: 10.1038/s41467-018-04878-2
pubmed: 29950589
pmcid: 6021390
Martinez AT, Rencoret J, Nieto L, Jimenez-Barbero J, Gutierrez A, Del Rio JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13(1):96–107. https://doi.org/10.1111/j.1462-2920.2010.02312.x
doi: 10.1111/j.1462-2920.2010.02312.x
pubmed: 21199251
Mercer JA, Burns NZ (2015) Natural products: emulation illuminates biosynthesis. Nat Chem 7(11):860–861. https://doi.org/10.1038/nchem.2377
doi: 10.1038/nchem.2377
pubmed: 26492003
Park HY, Kim TH, Kim CG, Kim GY, Kim CM, Kim ND, Kim BW, Hwang HJ, Choi YH (2013) Purpurogallin exerts anti-inflammatory effects in lipopolysaccharidestimulated BV2 microglial cells through the inactivation of the NF-κB and MAPK signaling pathways. Int J Mol Med 32(5):1171–1178. https://doi.org/10.3892/ijmm.2013.1478
doi: 10.3892/ijmm.2013.1478
pubmed: 24002379
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1(4):252–262. https://doi.org/10.4161/bbug.1.4.11438
doi: 10.4161/bbug.1.4.11438
pubmed: 21327057
pmcid: 3026464
Piscitelli A, Del Vecchio C, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G (2011) Fungal laccases: versatile tools for lignocellulose transformation. C R Biol 334(11):789–794. https://doi.org/10.1016/j.crvi.2011.06.007
doi: 10.1016/j.crvi.2011.06.007
pubmed: 22078735
Pontrelli S, Chiu TY, Lan EI, Chen FY, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46. https://doi.org/10.1016/j.ymben.2018.04.008
doi: 10.1016/j.ymben.2018.04.008
pubmed: 29689382
Prasad K, Mantha SV, Kalra J, Kapoor R, Kamalarajan BR (1997) Purpurogallin in the prevention of hypercholesterolemic atherosclerosis. Int J Angiol 6(3):157–166. https://doi.org/10.1007/BF01616174
doi: 10.1007/BF01616174
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843. https://doi.org/10.1126/science.1246843
doi: 10.1126/science.1246843
pubmed: 24833396
Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thony-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):e65633. https://doi.org/10.1371/journal.pone.0065633
doi: 10.1371/journal.pone.0065633
pubmed: 23755261
pmcid: 3670849
Roy JJ, Abraham TE (2006) Continuous biotransformation of pyrogallol to purpurogallin using cross-linked enzyme crystals of laccase as catalyst in a packed-bed reactor. J Chem Technol Biotechnol 81(11):1836–1839. https://doi.org/10.1002/jctb.1612
doi: 10.1002/jctb.1612
Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186(22):7815–7817. https://doi.org/10.1128/JB.186.22.7815-7817.2004
doi: 10.1128/JB.186.22.7815-7817.2004
pubmed: 15516598
pmcid: 524913
Solano F, Lucas-Elío P, López-Serrano D, Fernández E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204(1):175–181. https://doi.org/10.1111/j.1574-6968.2001.tb10882.x
doi: 10.1111/j.1574-6968.2001.tb10882.x
pubmed: 11682198
Su J, Fu J, Wang Q, Silva C, Cavaco-Paulo A (2018) Laccase: a green catalyst for the biosynthesis of poly-phenols. Crit Rev Biotechnol 38(2):294–307. https://doi.org/10.1080/07388551.2017.1354353
doi: 10.1080/07388551.2017.1354353
pubmed: 28738694
Thieme D, Neubauer P, Nies DH, Grass G (2008) Sandwich hybridization assay for sensitive detection of dynamic changes in mRNA transcript levels in crude Escherichia coli cell extracts in response to copper ions. Appl Environ Microbiol 74(24):7463–7470. https://doi.org/10.1128/AEM.01370-08
doi: 10.1128/AEM.01370-08
pubmed: 18952865
pmcid: 2607146
Wang H, Liu X, Zhao J, Yue Q, Yan Y, Gao Z, Dong Y, Zhang Z, Fan Y, Tian J, Wu N, Gong Y (2018) Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Sci Rep 8(1):14252. https://doi.org/10.1038/s41598-018-32446-7
doi: 10.1038/s41598-018-32446-7
pubmed: 30250139
pmcid: 6155172
Watanabe N, Sekine T, Takagi M, Iwasaki J, Imamoto N, Kawasaki H, Osada H (2009) Deficiency in chromosome congression by the inhibition of Plk1 polo box domain-dependent recognition. J Biol Chem 284(4):2344–2353. https://doi.org/10.1074/jbc.M805308200
doi: 10.1074/jbc.M805308200
pubmed: 19033445
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552. https://doi.org/10.1385/1-59259-584-7:531
doi: 10.1385/1-59259-584-7:531
pubmed: 10027275
Wu TW, Zeng LH, Wu J, Carey D (1991) Purpurogallin–a natural and effective hepatoprotector in vitro and in vivo. Biochem Cell Biol 69(10–11):747–750. https://doi.org/10.1139/o91-113
doi: 10.1139/o91-113
pubmed: 1799443
Wu TW, Zeng LH, Wu J, Fung KP, Weisel RD, Hempel A, Camerman N (1996) Molecular structure and antioxidant specificity of purpurogallin in three types of human cardiovascular cells. Biochem Pharmacol 52(7):1073–1080. https://doi.org/10.1016/0006-2952(96)00447-9
doi: 10.1016/0006-2952(96)00447-9
pubmed: 8831727
Xie X, Zu X, Liu F, Wang T, Wang X, Chen H, Liu K, Wang P, Liu F, Zheng Y, Bode AM, Dong Z, Kim DJ (2019) Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 58(7):1248–1259. https://doi.org/10.1002/mc.23007
doi: 10.1002/mc.23007
pubmed: 31100197
Zhang Y, Lv Z, Zhou J, Xin F, Ma J, Wu H, Fang Y, Jiang M, Dong W (2018) Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl Microbiol Biotechnol 102(24):10409–10423. https://doi.org/10.1007/s00253-018-9421-7
doi: 10.1007/s00253-018-9421-7
pubmed: 30327832
Zhang L, Cui H, Zou Z, Garakani TM, Novoa-Henriquez C, Jooyeh B, Schwaneberg U (2019) Directed evolution of a bacterial laccase (CueO) for enzymatic biofuel cells. Angew Chem Int Ed Engl 58(14):4562–4565. https://doi.org/10.1002/anie.201814069
doi: 10.1002/anie.201814069
pubmed: 30689276
Zhao M, Hong X, Abdullah YR, Xiao Y (2021) Rapid biosynthesis of phenolic glycosides and their derivatives from biomass-derived hydroxycinnamates. Green Chem 23(2):838–847. https://doi.org/10.1039/d0gc03595e
doi: 10.1039/d0gc03595e