Priming effects in soils across Europe.
agroecosystems
carbon cycling
land management
land use
priming effect
soil organic matter
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
16
08
2021
accepted:
03
12
2021
pubmed:
6
1
2022
medline:
25
2
2022
entrez:
5
1
2022
Statut:
ppublish
Résumé
Land use is a key factor driving changes in soil carbon (C) cycle and contents worldwide. The priming effect (PE)-CO
Substances chimiques
Soil
0
Carbon
7440-44-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2146-2157Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221. https://doi.org/10.1016/0038-0717(78)90099-8
Archer, E. (2020). rfPermute: Estimate permutation p-values for random forest importance metrics. https://CRAN.R-project.org/package=rfPermute
Bastida, F., García, C., Fierer, N., Eldridge, D. J., Bowker, M. A., Abades, S., Alfaro, F. D., Asefaw Berhe, A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., Hernández, T., Hseu, Z.-Y., Jehmlich, N., Kirchmair, M., Lambers, H., Neuhauser, S., … Delgado-Baquerizo, M. (2019). Global ecological predictors of the soil priming effect. Nature Communications, 10, 3481. https://doi.org/10.1038/s41467-019-11472-7
Bastida, F., Torres, I. F., Hernández, T., & García, C. (2017). The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biology and Biochemistry, 113, 173-183. https://doi.org/10.1016/j.soilbio.2017.06.012
Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T. H., & Kuzyakov, Y. (2007). Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105. https://doi.org/10.1016/j.apsoil.2007.05.002
Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I., Blagodatsky, S., & Kuzyakov, Y. (2014). Microbial interactions affect sources of priming induced by cellulose. Soil Biology and Biochemistry, 74, 39-49. https://doi.org/10.1016/j.soilbio.2014.02.017
Blagodatskaya, E., & Kuzyakov, Y. (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131. https://doi.org/10.1007/s00374-008-0334-y
Bouchoms, S., Wang, Z., Vanacker, V., Doetterl, S., & Van Oost, K. (2017). Modelling long-term soil organic carbon dynamics under the impact of land cover change and soil redistribution. Catena, 151, 63-73. https://doi.org/10.1016/j.catena.2016.12.008
Brant, J. B., Sulzman, E. W., & Myrold, D. D. (2006). Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 38, 2219-2232. https://doi.org/10.1016/j.soilbio.2006.01.022
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
Breitkreuz, C., Herzig, L., Buscot, F., Reitz, T., & Tarkka, M. (2021). Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology, 23, 5866-5882. https://doi.org/10.1111/1462-2920.15607
Chen, L., Liu, L., Qin, S., Yang, G., Fang, K., Zhu, B., Kuzyakov, Y., Chen, P., Xu, Y., & Yang, Y. (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 10, 5112. https://doi.org/10.1038/s41467-019-13119-z
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., Blagodatskaya, E., & Kuzyakov, Y. (2014). Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367. https://doi.org/10.1111/gcb.12475
Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., McNickle, G. G., Brzostek, E., & Jastrow, J. D. (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44. https://doi.org/10.1111/nph.12440
de Graaff, M.-A., Jastrow, J. D., Gillette, S., Johns, A., & Wullschleger, S. D. (2014). Differential priming of soil carbon driven by soil depth and root impacts on carbon availability. Soil Biology and Biochemistry, 69, 147-156. https://doi.org/10.1016/j.soilbio.2013.10.047
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. https://doi.org/10.1038/ncomms10541
Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., Abu Al-Soud, W., Sørensen, S., Bardgett, R. D., & Singh, B. K. (2017). It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188. https://doi.org/10.1111/1462-2920.13642
Dungait, J. A. J., Kemmitt, S. J., Michallon, L., Guo, S., Wen, Q., Brookes, P. C., & Evershed, R. P. (2011). Variable responses of the soil microbial biomass to trace concentrations of 13C-labelled glucose, using 13C-PLFA analysis. European Journal of Soil Science, 62, 117-126. https://doi.org/10.1111/j.1365-2389.2010.01321.x
European-Commission. (2018). Proposal for a regulation of the European Parliament and of the council establishing rules on support for strategic plans to be drawn up by Member States under the Common agricultural policy (CAP Strategic Plans) and financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD). COM/2018/392 final-2018/0216 (COD). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN
Feng, J., & Zhu, B. (2021). Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biology and Biochemistry, 153, 108118. https://doi.org/10.1016/j.soilbio.2020.108118
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086
Finn, D., Kopittke, P. M., Dennis, P. G., & Dalal, R. C. (2017). Microbial energy and matter transformation in agricultural soils. Soil Biology and Biochemistry, 111, 176-192. https://doi.org/10.1016/j.soilbio.2017.04.010
Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 35, 837-843. https://doi.org/10.1016/S0038-0717(03)00123-8
Frostegård, A., Tunlid, A., & Baath, E. (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry, 26, 723-730. https://doi.org/10.1016/0038-0717(93)90113-P
Guenet, B., Camino-Serrano, M., Ciais, P., Tifafi, M., Maignan, F., Soong, J. L., & Janssens, I. A. (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883. https://doi.org/10.1111/gcb.14069
Guenet, B., Leloup, J., Raynaud, X., Bardoux, G., & Abbadie, L. (2010). Negative priming effect on mineralization in a soil free of vegetation for 80 years. European Journal of Soil Science, 61, 384-391. https://doi.org/10.1111/j.1365-2389.2010.01234.x
Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8, 345-360. https://doi.org/10.1046/j.1354-1013.2002.00486.x
Guttières, R., Nunan, N., Raynaud, X., Lacroix, G., Barot, S., Barré, P., Girardin, C., Guenet, B., Lata, J.-C., & Abbadie, L. (2021). Temperature and soil management effects on carbon fluxes and priming effect intensity. Soil Biology and Biochemistry, 153, 108103. https://doi.org/10.1016/j.soilbio.2020.108103
Kuzyakov, Y., & Bol, R. (2006). Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 38, 747-758. https://doi.org/10.1016/j.soilbio.2005.06.025
Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32, 1485-1498. https://doi.org/10.1016/S0038-0717(00)00084-5
Kuzyakov, Y., & Zamanian, K. (2019). Reviews and syntheses: Agropedogenesis-humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences, 16, 4783-4803. https://doi.org/10.5194/bg-16-4783-2019
Li, B.-B., Li, P.-P., Yang, X.-M., Xiao, H.-B., Xu, M.-X., & Liu, G.-B. (2021). Land-use conversion changes deep soil organic carbon stock in the Chinese Loess Plateau. Land Degradation & Development, 32, 505-517. https://doi.org/10.1002/ldr.3644
Li, Q., Tian, Y., Zhang, X., Xu, X., Wang, H., & Kuzyakov, Y. (2017). Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Applied Soil Ecology, 114, 152-160. https://doi.org/10.1016/j.apsoil.2017.01.009
Liu, X.-J.-A., Finley, B. K., Mau, R. L., Schwartz, E., Dijkstra, P., Bowker, M. A., & Hungate, B. A. (2020). The soil priming effect: Consistent across ecosystems, elusive mechanisms. Soil Biology and Biochemistry, 140, 107617. https://doi.org/10.1016/j.soilbio.2019.107617
Liu, X.-J.-A., Sun, J., Mau, R. L., Finley, B. K., Compson, Z. G., van Gestel, N., Brown, J. R., Schwartz, E., Dijkstra, P., & Hungate, B. A. (2017). Labile carbon input determines the direction and magnitude of the priming effect. Applied Soil Ecology, 109, 7-13. https://doi.org/10.1016/j.apsoil.2016.10.002
Luo, Z., Wang, E., & Sun, O. J. (2016). A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems. Soil Biology and Biochemistry, 101, 96-103. https://doi.org/10.1016/j.soilbio.2016.07.011
Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M., Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner, G., & Griffiths, R. I. (2018). Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9, 3591. https://doi.org/10.1038/s41467-018-05980-1
Moreno, J. L., Torres, I. F., García, C., López-Mondéjar, R., & Bastida, F. (2019). Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area. Science of the Total Environment, 648, 1018-1030. https://doi.org/10.1016/j.scitotenv.2018.08.214
Mueller, C. W., & Koegel-Knabner, I. (2009). Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biology and Fertility of Soils, 45, 347-359. https://doi.org/10.1007/s00374-008-0336-9
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, J. L., Solymos, P., Henry, M., Stevens, H., & Wagner, H. (2013). Vegan: Community ecology package in R. Version 2.0-10.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: A review. European Journal of Soil Science, 69, 140-153. https://doi.org/10.1111/ejss.12499
Panettieri, M., Guigue, J., Chemidlin Prevost-Bouré, N., Thévenot, M., Lévêque, J., Le Guillou, C., Maron, P. A., Santoni, A. L., Ranjard, L., Mounier, S., Menasseri, S., Viaud, V., & Mathieu, O. (2020). Grassland-cropland rotation cycles in crop-livestock farming systems regulate priming effect potential in soils through modulation of microbial communities, composition of soil organic matter and abiotic soil properties. Agriculture, Ecosystems and Environment, 299, 106973. https://doi.org/10.1016/j.agee.2020.106973
Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., Henault, C., Lemanceau, P., Péan, M., Boiry, S., Fontaine, S., & Maron, P.-A. (2013). Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems, 16, 810-822. https://doi.org/10.1007/s10021-013-9650-7
Paterson, E., & Sim, A. (2013). Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Global Change Biology, 19, 1562-1571. https://doi.org/10.1111/gcb.12140
Pe'er, G., Zinngrebe, Y., Moreira, F., Sirami, C., Schindler, S., Müller, R., Bontzorlos, V., Clough, D., Bezák, P., Bonn, A., Hansjürgens, B., Lomba, Â., Möckel, S., Passoni, G., Schleyer, C., Schmidt, J., & Lakner, S. (2019). A greener path for the EU Common Agricultural Policy. Science, 365, 449-451. https://doi.org/10.1126/science.aax3146
Perveen, N., Barot, S., Maire, V., Cotrufo, M. F., Shahzad, T., Blagodatskaya, E., Stewart, C. E., Ding, W., Siddiq, M. R., Dimassi, B., Mary, B., & Fontaine, S. (2019). Universality of priming effect: An analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biology and Biochemistry, 134, 162-171. https://doi.org/10.1016/j.soilbio.2019.03.027
Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., & Kuzyakov, Y. (2014). Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 20, 1943-1954. https://doi.org/10.1111/gcb.12458
Razanamalala, K., Razafimbelo, T., Maron, P. A., Ranjard, L., Chemidlin, N., Lelièvre, M., Dequiedt, S., Ramaroson, V. H., Marsden, C., Becquer, T., Trap, J., Blanchart, E., & Bernard, L. (2018). Soil microbial diversity drives the priming effect along climate gradients: A case study in Madagascar. ISME Journal, 12, 451-462. https://doi.org/10.1038/ismej.2017.178
Rinnan, R., & Bååth, E. (2009). Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environmental Microbiology, 75, 3611-3620. https://doi.org/10.1128/AEM.02865-08
Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. D. C., Paula, F. S., Mirza, B., Hamaoui, G. S., Tsai, S. M., Feigl, B., Tiedje, J. M., Bohannan, B. J. M., & Nusslein, K. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 110, 988-993. https://doi.org/10.1073/pnas.1220608110
Running, S., & Zhao, M. (2019). MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC.
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23-74.
Scheu, S. (1992). Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biology and Biochemistry, 24, 1113-1118. https://doi.org/10.1016/0038-0717(92)90061-2
Schutter, M. E., & Dick, R. P. (2000). Comparison of fatty acid methyl ester (fame) methods for characterizing microbial communities. Soil Science Society of America Journal, 64, 1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
Shahbaz, M., Kuzyakov, Y., & Heitkamp, F. (2017). Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma, 304, 76-82. https://doi.org/10.1016/j.geoderma.2016.05.019
Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C. (2017). Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiology Ecology, 93, fix146. https://doi.org/10.1093/femsec/fix146
Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465, 72-96. https://doi.org/10.1016/j.scitotenv.2013.01.031
Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., … Zeng, N. (2015). Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 29, 775-792. https://doi.org/10.1002/2014GB005021
Trabucco, A., & Zomer, R. J. (2018). Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consortium for Spatial Information, 10. https://doi.org/10.6084/m9.figshare.7504448.v1
Vera, A., Moreno, J. L., Siles, J. A., López-Mondejar, R., Zhou, Y., Li, Y., García, C., Nicolás, E., & Bastida, F. (2021). Interactive impacts of boron and organic amendments in plant-soil microbial relationships. Journal of Hazardous Materials, 408, 124939. https://doi.org/10.1016/j.jhazmat.2020.124939
Vestergård, M., Reinsch, S., Bengston, P., Ambus, P., & Christensen, S. (2016). Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biology and Biochemistry, 100, 140-148. https://doi.org/10.1016/j.soilbio.2016.06.010
Wei, X., Shao, M., Gale, W., & Li, L. (2014). Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4, 4062. https://doi.org/10.1038/srep04062
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Yanni, S. F., Diochon, A., Helgason, B. L., Ellert, B. H., & Gregorich, E. G. (2017). Temperature response of plant residue and soil organic matter decomposition in soil from different depths. European Journal of Soil Science, 69, 325-335. https://doi.org/10.1111/ejss.12508
Young, I. M., & Ritz, K. (2000). Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53, 201-213. https://doi.org/10.1016/S0167-1987(99)00106-3
Zamanian, K., Zarebanadkouki, M., & Kuzyakov, Y. (2018). Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, 24, 2810-2817. https://doi.org/10.1111/gcb.14148
Zhang, W., Wang, X., & Wang, S. (2013). Addition of external organic carbon and native soil organic carbon decomposition: A meta-analysis. PLoS One, 8, e54779. https://doi.org/10.1371/journal.pone.0054779
Zhou, J., Wen, Y., Shi, L., Marshall, M. R., Kuzyakov, Y., Blagodatskaya, E., & Zang, H. (2021). Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biology and Biochemistry, 152, 108069. https://doi.org/10.1016/j.soilbio.2020.108069