Decrease of Pdzrn3 is required for heart maturation and protects against heart failure.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 01 2022
Historique:
received: 08 06 2021
accepted: 24 11 2021
entrez: 8 1 2022
pubmed: 9 1 2022
medline: 24 2 2022
Statut: epublish

Résumé

Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.

Identifiants

pubmed: 34996942
doi: 10.1038/s41598-021-03795-7
pii: 10.1038/s41598-021-03795-7
pmc: PMC8742099
doi:

Substances chimiques

beta Catenin 0
PDZRN3 protein, mouse EC 2.3.2.27
Ubiquitin-Protein Ligases EC 2.3.2.27
Protein Kinase C EC 2.7.11.13

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8

Subventions

Organisme : Agence National de la Recherche ANR -16-CE17-0001-01
ID : ANR -16-CE17-0001-01

Informations de copyright

© 2022. The Author(s).

Références

Balse, E. et al. Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiol. Rev. 92, 1317–1358 (2012).
pubmed: 22811429 doi: 10.1152/physrev.00041.2011
Le Garrec, J.-F. et al. Quantitative analysis of polarity in 3D reveals local cell coordination in the embryonic mouse heart. Development 140, 395–404 (2013).
pubmed: 23250213 doi: 10.1242/dev.087940
Yang, Y. & Mlodzik, M. Wnt-frizzled/planar cell polarity signaling: Cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31, 623–646 (2015).
pubmed: 26566118 pmcid: 4673888 doi: 10.1146/annurev-cellbio-100814-125315
Pandur, P., Lasche, M., Eisenberg, L. M. & Kuhl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641 (2002).
pubmed: 12167861 doi: 10.1038/nature00921
Nagy, I. et al. Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and beta-catenin expression. Cardiovasc. Res. 85, 100–109 (2010).
pubmed: 19622544 doi: 10.1093/cvr/cvp254
Henderson, D. J. et al. Cardiovascular defects associated with abnormalities in midline development in the Loop-tail mouse mutant. Circ. Res. 89, 6–12 (2001).
pubmed: 11440971 doi: 10.1161/hh1301.092497
Leung, C., Lu, X., Liu, M. & Feng, Q. Rac1 signaling is critical to cardiomyocyte polarity and embryonic heart development. J. Am. Heart Assoc. 3, e001271 (2014).
pubmed: 25315346 pmcid: 4323834 doi: 10.1161/JAHA.114.001271
Sewduth, R. N. et al. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat. Commun. 5, 4832 (2014).
pubmed: 25198863 doi: 10.1038/ncomms5832
Sewduth, R. N. et al. PDZRN3 destabilizes endothelial cell-cell junctions through a PKCzeta-containing polarity complex to increase vascular permeability. Sci. Signaling 10, 464 (2017).
doi: 10.1126/scisignal.aag3209
Ho, H. et al. Mechanisms of Wnt5a-ror signaling in development and disease. FASEB J. 34, 1–1 (2020).
Chhabra, E. S. & Higgs, H. N. The many faces of actin: Matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110–1121 (2007).
pubmed: 17909522 doi: 10.1038/ncb1007-1110
Gottardi, C. J., Arpin, M., Fanning, A. S. & Louvard, D. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc. Natl. Acad. Sci. 93, 10779–10784 (1996).
pubmed: 8855257 pmcid: 38232 doi: 10.1073/pnas.93.20.10779
Yoshida, M. et al. Alterations in adhesion junction precede gap junction remodelling during the development of heart failure in cardiomyopathic hamsters. Cardiovasc. Res. 92, 95–105 (2011).
pubmed: 21693625 doi: 10.1093/cvr/cvr182
Krusche, C. A. et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res. Cardiol. 106, 617–633 (2011).
pubmed: 21455723 pmcid: 3105238 doi: 10.1007/s00395-011-0175-y
Schlipp, A. et al. Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc. Res. 104, 245–257 (2014).
pubmed: 25213555 doi: 10.1093/cvr/cvu206
Porrello, E. R. & Olson, E. N. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 13, 556–570 (2014).
pubmed: 25108892 pmcid: 4316722 doi: 10.1016/j.scr.2014.06.003
Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600 (2006).
pubmed: 16936699 doi: 10.1038/nrm1983
Hoshijima, M. & Chien, K. R. Mixed signals in heart failure: Cancer rules. J. Clin. Invest. 109, 849–855 (2002).
pubmed: 11927610 pmcid: 150934 doi: 10.1172/JCI0215380
Nomura, S. et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat. Commun. 9, 4435 (2018).
pubmed: 30375404 pmcid: 6207673 doi: 10.1038/s41467-018-06639-7
Gessert, S. & Kühl, M. The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ. Res. 107, 186–199 (2010).
pubmed: 20651295 doi: 10.1161/CIRCRESAHA.110.221531
Jeong, M.-H. et al. Cdon deficiency causes cardiac remodeling through hyperactivation of WNT/β-catenin signaling. Proc. Natl. Acad. Sci. USA 114, E1345–E1354 (2017).
pubmed: 28154134 pmcid: 5338397 doi: 10.1073/pnas.1615105114
Mazzotta, S. et al. Distinctive roles of canonical and noncanonical wnt signaling in human embryonic cardiomyocyte development. Stem Cell Rep. 7, 764–776 (2016).
doi: 10.1016/j.stemcr.2016.08.008
Malekar, P. et al. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55, 939–945 (2010).
pubmed: 20177000 doi: 10.1161/HYPERTENSIONAHA.109.141127
Haq, S. et al. Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc. Natl. Acad. Sci. USA. 100, 4610–4615 (2003).
pubmed: 12668767 pmcid: 153603 doi: 10.1073/pnas.0835895100
Blankesteijn, W. M., van de Schans, V. A., ter Horst, P. & Smits, J. F. The Wnt/frizzled/GSK-3 beta pathway: S novel therapeutic target for cardiac hypertrophy. Trends Pharmacol. Sci. 29, 175–180 (2008).
pubmed: 18342376 doi: 10.1016/j.tips.2008.01.003
Qu, J. et al. Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J. Mol. Cell. Cardiol. 43, 319–326 (2007).
pubmed: 17673255 pmcid: 2084259 doi: 10.1016/j.yjmcc.2007.06.006
Petrich, B. G. et al. Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J. Biol. Chem. 279, 15330–15338 (2004).
pubmed: 14742426 doi: 10.1074/jbc.M314142200
Abdul-Ghani, M. et al. Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical wnt signals. Mol. Cell. Biol. 31, 163–178 (2011).
pubmed: 21041481 doi: 10.1128/MCB.01539-09
Toyofuku, T. et al. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J. Biol. Chem. 273, 12725–12731 (1998).
pubmed: 9582296 doi: 10.1074/jbc.273.21.12725
Barker, R. J., Price, R. L. & Gourdie, R. G. Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circ. Res. 90, 317–324 (2002).
pubmed: 11861421 doi: 10.1161/hh0302.104471
Laing, J. G., Tadros, P. N., Westphale, E. M. & Beyer, E. C. Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp. Cell Res. 236, 482–492 (1997).
pubmed: 9367633 doi: 10.1006/excr.1997.3747
Danik, S. B. et al. Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ. Res. 95, 1035–1041 (2004).
pubmed: 15499029 pmcid: 2956442 doi: 10.1161/01.RES.0000148664.33695.2a
Gutstein, D. E. et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 88, 333–339 (2001).
pubmed: 11179202 pmcid: 3630465 doi: 10.1161/01.RES.88.3.333
van Rijen, H. V. M. et al. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109, 1048–1055 (2004).
pubmed: 14967725 doi: 10.1161/01.CIR.0000117402.70689.75
Saffitz, J. E. Arrhythmogenic cardiomyopathy and abnormalities of cell-to-cell coupling. Heart Rhythm 6, S62–S65 (2009).
pubmed: 19541548 doi: 10.1016/j.hrthm.2009.03.003
Eshkind, L. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur. J. Cell Biol. 81, 592–598 (2002).
pubmed: 12494996 doi: 10.1078/0171-9335-00278
Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement From the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).
pubmed: 16567565 doi: 10.1161/CIRCULATIONAHA.106.174287
Debus, J. D. et al. In vitro analysis of arrhythmogenic cardiomyopathy associated desmoglein-2 (DSG2) mutations reveals diverse glycosylation patterns. J. Mol. Cell. Cardiol. 129, 303–313 (2019).
pubmed: 30885746 doi: 10.1016/j.yjmcc.2019.03.014
Gutstein, D. E. The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions. J. Cell Sci. 116, 875–885 (2003).
pubmed: 12571285 doi: 10.1242/jcs.00258
Nekrasova, O. E. et al. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J. Cell Biol. 195, 1185–1203 (2011).
pubmed: 22184201 pmcid: 3246898 doi: 10.1083/jcb.201106057
Ehler, E. et al. Alterations at the intercalated disk associated with the absence of muscle LIM protein. J. Cell Biol. 153, 763–772 (2001).
pubmed: 11352937 pmcid: 2192386 doi: 10.1083/jcb.153.4.763
Ferreira-Cornwell, M. C. et al. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J. Cell Sci. 115, 1623–1634 (2002).
pubmed: 11950881 doi: 10.1242/jcs.115.8.1623
Phillips, H. M. et al. Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ. Res. 101, 137–145 (2007).
pubmed: 17556662 doi: 10.1161/CIRCRESAHA.106.142406
Bruce, A. F., Rothery, S., Dupont, E. & Severs, N. J. Gap junction remodelling in human heart failure is associated with increased interaction of connexin43 with ZO-1. Cardiovasc. Res. 77, 757–765 (2008).
pubmed: 18056766 doi: 10.1093/cvr/cvm083
Laing, J. G., Saffitz, J. E., Steinberg, T. H. & Yamada, K. A. Diminished zonula occludens-1 expression in the failing human heart. Cardiovasc. Pathol. 16, 159–164 (2007).
pubmed: 17502245 doi: 10.1016/j.carpath.2007.01.004
Kostin, S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J. Cell Mol. Med. 11, 892–895 (2007).
pubmed: 17760848 pmcid: 3823265 doi: 10.1111/j.1582-4934.2007.00063.x
Sepp, R., Severs, N. J. & Gourdie, R. G. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart 76, 412–417 (1996).
pubmed: 8944586 pmcid: 484572 doi: 10.1136/hrt.76.5.412
Severs, N. J., Bruce, A. F., Dupont, E. & Rothery, S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 80, 9–19 (2008).
pubmed: 18519446 pmcid: 2533424 doi: 10.1093/cvr/cvn133
Hong, T.-T. et al. BIN1 is reduced and Cav12 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm 9, 812–820 (2012).
pubmed: 22138472 doi: 10.1016/j.hrthm.2011.11.055
Smyth, J. W. et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J. Clin. Invest. 120, 266–279 (2010).
pubmed: 20038810 doi: 10.1172/JCI39740
Sohal, D. S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible cre protein. Circ. Res. 89, 20–25 (2001).
pubmed: 11440973 doi: 10.1161/hh1301.092687
https://fr.freedownloadmanager.org/Windows-PC/LabChart.html .
https://imagej.net/Fiji . Accessed 24 Jan 2020.
https://www.bruker.com/.../infrared-and-raman/opus-spectroscopy-software/downloads.html .
Hackett, M. J. et al. Subcellular biochemical investigation of Purkinje neurons using synchrotron radiation Fourier transform infrared spectroscopic imaging with a focal plane array detector. ACS Chem. Neurosci. 4, 1071–1080 (2013).
pubmed: 23638613 pmcid: 3715895 doi: 10.1021/cn4000346
https://www.graphpad.com/scientific-software/prism/ (2020).

Auteurs

Mathieu Pernot (M)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Béatrice Jaspard-Vinassa (B)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Alice Abelanet (A)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Sebastien Rubin (S)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Isabelle Forfar (I)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Sylvie Jeanningros (S)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Laura Cetran (L)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Murielle Han-Yee Yu (MH)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.

Elise Balse (E)

Faculté de Médecine, Université Pierre et Marie Curie, Sorbonne University, INSERM UMR_S1166, Paris, France.

Stéphane Hatem (S)

Faculté de Médecine, Université Pierre et Marie Curie, Sorbonne University, INSERM UMR_S1166, Paris, France.

Pascale Dufourcq (P)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.
Service de Biochimie Clinique, CHU de Bordeaux, Bordeaux, France.

Thierry Couffinhal (T)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.
Service des Maladies Cardiaques et Vasculaires, CHU de Bordeaux, Bordeaux, France.

Cécile Duplàa (C)

Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France. cecile.duplaa@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH