SLC10A7, an orphan member of the SLC10 family involved in congenital disorders of glycosylation.


Journal

Human genetics
ISSN: 1432-1203
Titre abrégé: Hum Genet
Pays: Germany
ID NLM: 7613873

Informations de publication

Date de publication:
Jul 2022
Historique:
received: 05 06 2021
accepted: 14 12 2021
pubmed: 10 1 2022
medline: 12 7 2022
entrez: 9 1 2022
Statut: ppublish

Résumé

SLC10A7, encoded by the so-called SLC10A7 gene, is the seventh member of a human sodium/bile acid cotransporter family, known as the SLC10 family. Despite similarities with the other members of the SLC10 family, SLC10A7 does not exhibit any transport activity for the typical SLC10 substrates and is then considered yet as an orphan carrier. Recently, SLC10A7 mutations have been identified as responsible for a new Congenital Disorder of Glycosylation (CDG). CDG are a family of rare and inherited metabolic disorders, where glycosylation abnormalities lead to multisystemic defects. SLC10A7-CDG patients presented skeletal dysplasia with multiple large joint dislocations, short stature and amelogenesis imperfecta likely mediated by glycosaminoglycan (GAG) defects. Although it has been demonstrated that the transporter and substrate specificities of SLC10A7, if any, differ from those of the main members of the protein family, SLC10A7 seems to play a role in Ca

Identifiants

pubmed: 34999954
doi: 10.1007/s00439-021-02420-x
pii: 10.1007/s00439-021-02420-x
doi:

Substances chimiques

Glycosaminoglycans 0
Organic Anion Transporters, Sodium-Dependent 0
Slc10a7 protein, human 0
Symporters 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1287-1298

Subventions

Organisme : Agence Nationale de la Recherche
ID : SKELGAG
Organisme : Agence Nationale de la Recherche
ID : EUROGLYCANomics

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abe T, Kanemitu Y, Nakasone M et al (2013) SLC10A4 is a protease-activated transporter that transports bile acids. J Biochem 154:93–101. https://doi.org/10.1093/jb/mvt031
doi: 10.1093/jb/mvt031 pubmed: 23589386
Alcalay M, Toniolo D (1988) CpG islands of the X chromosome are gene associated. Nucleic Acids Res 16:9527–9543. https://doi.org/10.1093/nar/16.20.9527
doi: 10.1093/nar/16.20.9527 pubmed: 3186440 pmcid: 338761
Ashikov A, Abu Bakar N, Wen X-Y et al (2018) Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum Mol Genet 27:3029–3045. https://doi.org/10.1093/hmg/ddy213
doi: 10.1093/hmg/ddy213 pubmed: 29878199
Bijsmans ITGW, Bouwmeester RAM, Geyer J et al (2012) Homo- and hetero-dimeric architecture of the human liver Na
doi: 10.1042/BJ20111234 pubmed: 22029531
Chen Y-H, Narimatsu Y, Clausen TM et al (2018) The GAGOme: a cell-based library of displayed glycosaminoglycans. Nat Methods 15:881–888. https://doi.org/10.1038/s41592-018-0086-z
doi: 10.1038/s41592-018-0086-z pubmed: 30104636
Claro da Silva T, Polli JE, Swaan PW (2013) The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 34:252–269. https://doi.org/10.1016/j.mam.2012.07.004
doi: 10.1016/j.mam.2012.07.004 pubmed: 23506869
Craddock AL, Love MW, Daniel RW et al (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157-169. https://doi.org/10.1152/ajpgi.1998.274.1.G157
doi: 10.1152/ajpgi.1998.274.1.G157 pubmed: 9458785
Döring B, Lütteke T, Geyer J, Petzinger E (2012) The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr 70:105–168. https://doi.org/10.1016/B978-0-12-394316-3.00004-1
doi: 10.1016/B978-0-12-394316-3.00004-1 pubmed: 23177985
Dubail J, Huber C, Chantepie S et al (2018) SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 9:3087. https://doi.org/10.1038/s41467-018-05191-8
doi: 10.1038/s41467-018-05191-8 pubmed: 30082715 pmcid: 6078967
Fernandes CF, Godoy JR, Döring B, Cavalcanti MCO, Bergmann M, Petzinger E, Geyer J (2007) The novel putative bile acid transporter SLC10A5 is highly expressed in liver and kidney. Biochem Biophys Res Commun 361(1):26–32 https://doi.org/10.1016/j.bbrc.2007.06.160
Foulquier F, Amyere M, Jaeken J et al (2012) TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 91:15–26. https://doi.org/10.1016/j.ajhg.2012.05.002
doi: 10.1016/j.ajhg.2012.05.002 pubmed: 22683087 pmcid: 3397274
Foulquier F, Legrand D (2020) Biometals and glycosylation in humans: congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochim Biophys Acta Gen Subj 1864:129674. https://doi.org/10.1016/j.bbagen.2020.129674
doi: 10.1016/j.bbagen.2020.129674 pubmed: 32599014
Goddard TD, Huang CC, Meng EC et al (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27:14–25. https://doi.org/10.1002/pro.3235
doi: 10.1002/pro.3235 pubmed: 28710774
Godoy JR, Fernandes C, Döring B et al (2007) Molecular and phylogenetic characterization of a novel putative membrane transporter (SLC10A7), conserved in vertebrates and bacteria. Eur J Cell Biol 86:445–460. https://doi.org/10.1016/j.ejcb.2007.06.001
doi: 10.1016/j.ejcb.2007.06.001 pubmed: 17628207
Grosser G, Bennien J, Sánchez-Guijo A et al (2018) Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6). J Steroid Biochem Mol Biol 179:20–25. https://doi.org/10.1016/j.jsbmb.2017.09.013
doi: 10.1016/j.jsbmb.2017.09.013 pubmed: 28951227
Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–1331
doi: 10.1172/JCI117091
Hagenbuch B, Meier PJ (1996) Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis 16:129–136. https://doi.org/10.1055/s-2007-1007226
doi: 10.1055/s-2007-1007226 pubmed: 8781018
Ho RH, Leake BF, Roberts RL et al (2004) Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222. https://doi.org/10.1074/jbc.M305782200
doi: 10.1074/jbc.M305782200 pubmed: 14660639
Houdou M, Lebredonchel E, Garat A et al (2019) Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2. FASEB J 33:2669–2679. https://doi.org/10.1096/fj.201800387R
doi: 10.1096/fj.201800387R pubmed: 30307768
Hu N-J, Iwata S, Cameron AD, Drew D (2011) Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478:408–411. https://doi.org/10.1038/nature10450
doi: 10.1038/nature10450 pubmed: 21976025 pmcid: 3198845
Jiang L, Alber J, Wang J et al (2012) The Candida albicans plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis. Biochem J 444:497–502. https://doi.org/10.1042/BJ20112166
doi: 10.1042/BJ20112166 pubmed: 22530691
Karakus E, Zahner D, Grosser G et al (2018) Estrone-3-sulfate stimulates the proliferation of T47D breast cancer cells stably transfected with the sodium-dependent organic anion transporter SOAT (SLC10A6). Front Pharmacol. https://doi.org/10.3389/fphar.2018.00941
doi: 10.3389/fphar.2018.00941 pubmed: 30186172 pmcid: 6111516
Karakus E, Wannowius M, Müller SF et al (2020) The orphan solute carrier SLC10A7 is a novel negative regulator of intracellular calcium signaling. Sci Rep. https://doi.org/10.1038/s41598-020-64006-3
doi: 10.1038/s41598-020-64006-3 pubmed: 32350310 pmcid: 7190670
Kosters A, Abebe DF, Felix JC et al (2016) Inflammation-associated upregulation of the sulfated steroid transporter Slc10a6 in mouse liver and macrophage cell lines: Slc10a6 upregulation in hepatic inflammation. Hepatol Res 46:794–803. https://doi.org/10.1111/hepr.12609
doi: 10.1111/hepr.12609 pubmed: 26510996
Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann NY Acad Sci 1356:45–79. https://doi.org/10.1111/nyas.12938
doi: 10.1111/nyas.12938 pubmed: 26469693
Larhammar M, Patra K, Blunder M, Emilsson L, Peuckert C, Arvidsson E, Rönnlund D, Preobraschenski J, Birgner C, Limbach C, Widengren J, Blom H, Jahn R, Wallén-Mackenzie Å, Kullander K (2015) SLC10A4 Is a Vesicular Amine-Associated Transporter Modulating Dopamine Homeostasis. Biol Psychiatry 77(6):526–536. https://doi.org/10.1016/j.biopsych.2014.07.017
Laugel-Haushalter V, Bär S, Schaefer E et al (2019) A new SLC10A7 homozygous missense mutation responsible for a milder phenotype of skeletal dysplasia with amelogenesis imperfecta. Front Genet 10:504. https://doi.org/10.3389/fgene.2019.00504
doi: 10.3389/fgene.2019.00504 pubmed: 31191616 pmcid: 6546871
Lu B, Fivaz M (2016) Neuronal SOCE: myth or reality? Trends Cell Biol 26:890–893. https://doi.org/10.1016/j.tcb.2016.09.008
doi: 10.1016/j.tcb.2016.09.008 pubmed: 27720332
Madeira F, Park YM, Lee J et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268
doi: 10.1093/nar/gkz268 pubmed: 30976793 pmcid: 6602479
Mortier GR, Cohn DH, Cormier-Daire V et al (2019) Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A 179:2393–2419. https://doi.org/10.1002/ajmg.a.61366
doi: 10.1002/ajmg.a.61366 pubmed: 31633310
Ng BG, Freeze HH (2018) Perspectives on glycosylation and its congenital disorders. Trends Genet 34:466–476. https://doi.org/10.1016/j.tig.2018.03.002
doi: 10.1016/j.tig.2018.03.002 pubmed: 29606283 pmcid: 5959770
Noppes S, Müller SF, Bennien J et al (2019) Homo- and heterodimerization is a common feature of the solute carrier family SLC10 members. Biol Chem 400:1371–1384. https://doi.org/10.1515/hsz-2019-0148
doi: 10.1515/hsz-2019-0148 pubmed: 31256060
Splinter PL, Lazaridis KN, Dawson PA, LaRusso NF (2006) Cloning and expression of SLC10A4, a putative organic anion transport protein. World J Gastroenterol 12:6797–6805. https://doi.org/10.3748/wjg.v12.i42.6797
doi: 10.3748/wjg.v12.i42.6797 pubmed: 17106928 pmcid: 4087434
Volpi S, Yamazaki Y, Brauer PM et al (2017) EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med 214:623–637. https://doi.org/10.1084/jem.20161525
doi: 10.1084/jem.20161525 pubmed: 28148688 pmcid: 5339678
Wang X, Lyu Y, Ji Y et al (2021) Substrate binding in the bile acid transporter ASBT
doi: 10.1107/S2059798320015004 pubmed: 33404531
Wong MH, Oelkers P, Dawson PA (1995) Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 270:27228–27234. https://doi.org/10.1074/jbc.270.45.27228
doi: 10.1074/jbc.270.45.27228 pubmed: 7592981
Xiao L, Pan G (2017) An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: the apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol 41:509–515. https://doi.org/10.1016/j.clinre.2017.02.001
doi: 10.1016/j.clinre.2017.02.001 pubmed: 28336180
Zhao Y, Yan H, Happeck R et al (2016) The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. Eur J Cell Biol 95:164–174. https://doi.org/10.1016/j.ejcb.2016.01.001
doi: 10.1016/j.ejcb.2016.01.001 pubmed: 26832117
Zhou X, Levin EJ, Pan Y et al (2014) Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505:569–573. https://doi.org/10.1038/nature12811
doi: 10.1038/nature12811 pubmed: 24317697
Zou X, Wang D, Qiu G et al (2005) Molecular cloning and characterization of a novel human C4orf13 gene, tentatively a member of the sodium bile acid cotransporter family. Biochem Genet 43:165–173. https://doi.org/10.1007/s10528-005-1509-y
doi: 10.1007/s10528-005-1509-y pubmed: 15932064

Auteurs

Zoé Durin (Z)

Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.

Johanne Dubail (J)

Université de Paris, INSERM UMR1163, Institut Imagine, Paris, France.

Aurore Layotte (A)

Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.

Dominique Legrand (D)

Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.

Valérie Cormier-Daire (V)

Université de Paris, INSERM UMR1163, Institut Imagine, Paris, France.
Service de Génétique Clinique, Centre de Référence pour les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France.

François Foulquier (F)

Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France. francois.foulquier@univ-lille.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH