Molecular Determinants of Carbocation Cyclisation in Bacterial Monoterpene Synthases.
enzyme catalysis
molecular dynamics
protein engineering
synthetic biology
terpenoids
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
04 03 2022
04 03 2022
Historique:
revised:
07
01
2022
received:
16
12
2021
pubmed:
11
1
2022
medline:
26
4
2022
entrez:
10
1
2022
Statut:
ppublish
Résumé
Monoterpene synthases are often promiscuous enzymes, yielding product mixtures rather than pure compounds due to the nature of the branched reaction mechanism involving reactive carbocations. Two previously identified bacterial monoterpene synthases, a linalool synthase (bLinS) and a cineole synthase (bCinS), produce nearly pure linalool and cineole from geranyl diphosphate, respectively. We used a combined experimental and computational approach to identify critical residues involved in bacterial monoterpenoid synthesis. Phe77 is essential for bCinS activity, guiding the linear carbocation intermediate towards the formation of the cyclic α-terpinyl intermediate; removal of the aromatic ring results in variants that produce acyclic products only. Computational chemistry confirmed the importance of Phe77 in carbocation stabilisation. Phe74, Phe78 and Phe179 are involved in maintaining the active site shape in bCinS without a specific role for the aromatic ring. Phe295 in bLinS, and the equivalent Ala301 in bCinS, are essential for linalool and cineole formation, respectively. Where Phe295 places steric constraints on the carbocation intermediates, Ala301 is essential for bCinS initial cyclisation and activity. Our multidisciplinary approach gives unique insights into how carefully placed amino acid residues in the active site can direct carbocations down specific paths, by placing steric constraints or offering stabilisation via cation-π interactions.
Identifiants
pubmed: 35005823
doi: 10.1002/cbic.202100688
pmc: PMC9303655
doi:
Substances chimiques
Eucalyptol
RV6J6604TK
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202100688Subventions
Organisme : BBSRC
ID : BB/R001332/1
Organisme : BBSRC
ID : BB/M026280/1
Informations de copyright
© 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH.
Références
J Biol Chem. 2008 May 30;283(22):15431-9
pubmed: 18385128
PLoS One. 2020 Apr 30;15(4):e0232220
pubmed: 32353014
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3332-7
pubmed: 25733883
Chembiochem. 2021 Jul 1;22(13):2325-2334
pubmed: 33938632
Biotechnol Bioeng. 2017 Aug;114(8):1703-1712
pubmed: 28369701
J Comput Chem. 2019 Aug 5;40(21):1902-1910
pubmed: 31062376
Chembiochem. 2020 Apr 1;21(7):985-990
pubmed: 31682055
Plant J. 2011 Apr;66(1):212-29
pubmed: 21443633
J Appl Microbiol. 2015 Sep;119(3):605-19
pubmed: 26095690
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E958-67
pubmed: 26842837
ACS Catal. 2017 Jan 6;7(1):812-818
pubmed: 29399379
Arch Biochem Biophys. 2005 Jul 15;439(2):222-33
pubmed: 15978541
Food Chem Toxicol. 2008 Nov;46 Suppl 11:S190-2
pubmed: 19097259
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15375-80
pubmed: 12432096
Plant Cell. 2007 Jun;19(6):1994-2005
pubmed: 17557809
ChemistrySelect. 2016 Jun 21;1(9):1893-1896
pubmed: 29756025
Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20781-20785
pubmed: 34318977
Bioengineered. 2015;6(5):288-93
pubmed: 26091008
Biochemistry. 2018 Jul 3;57(26):3773-3779
pubmed: 29791145
Phytochemistry. 2017 May;137:34-41
pubmed: 28215610
Nat Biotechnol. 2005 May;23(5):612-6
pubmed: 15821729
J Phys Chem A. 2009 Dec 3;113(48):13628-32
pubmed: 19886621
J Biol Chem. 2014 Aug 22;289(34):23859-69
pubmed: 25016016
Biochemistry. 2010 Mar 2;49(8):1787-97
pubmed: 20131801
J Am Chem Soc. 2012 Nov 28;134(47):19454-62
pubmed: 23101787
Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7652-6
pubmed: 24890698
Chem Commun (Camb). 2011 Apr 14;47(14):4074-80
pubmed: 21305070
ACS Catal. 2017 Sep 1;7(9):6268-6282
pubmed: 28966840
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):857-62
pubmed: 25535391
Metab Eng. 2013 Sep;19:33-41
pubmed: 23727191
Chembiochem. 2011 Sep 5;12(13):1988-91
pubmed: 21726035
J Comput Chem. 2018 Jul 15;39(19):1215-1225
pubmed: 29450907
Science. 1997 Sep 19;277(5333):1815-20
pubmed: 9295271
Adv Biochem Eng Biotechnol. 2015;148:63-106
pubmed: 25583224
Science. 1997 Sep 19;277(5333):1820-4
pubmed: 9295272
Chembiochem. 2022 Mar 4;23(5):e202100688
pubmed: 35005823
Biochemistry. 2014 Feb 25;53(7):1155-68
pubmed: 24517311
Chem Rev. 2017 Sep 13;117(17):11570-11648
pubmed: 28841019
J Biochem. 1990 Dec;108(6):995-1000
pubmed: 2089044
ACS Catal. 2019 May 15;8(5):3780-3791
pubmed: 31157124
Nat Prod Rep. 2022 Jan 26;39(1):90-118
pubmed: 34231643
J Am Chem Soc. 2002 Jul 3;124(26):7681-9
pubmed: 12083921
J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273
pubmed: 23341755
J Biotechnol. 2014 Jan;169:42-50
pubmed: 24269531
Chembiochem. 2011 Nov 4;12(16):2403-7
pubmed: 21910204
Nat Biotechnol. 2003 Jul;21(7):796-802
pubmed: 12778056
Nature. 2013 Apr 25;496(7446):528-32
pubmed: 23575629
Appl Microbiol Biotechnol. 2016 Apr;100(7):2927-38
pubmed: 26915992
Arch Biochem Biophys. 2004 May 1;425(1):65-76
pubmed: 15081895
Biochemistry. 2017 Oct 31;56(43):5798-5811
pubmed: 28967743