Immunological causes of obsessive-compulsive disorder: is it time for the concept of an "autoimmune OCD" subtype?
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
10 01 2022
10 01 2022
Historique:
received:
23
05
2021
accepted:
19
10
2021
revised:
09
10
2021
entrez:
11
1
2022
pubmed:
12
1
2022
medline:
1
2
2022
Statut:
epublish
Résumé
Obsessive-compulsive disorder (OCD) is a highly disabling mental illness that can be divided into frequent primary and rarer organic secondary forms. Its association with secondary autoimmune triggers was introduced through the discovery of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS) and Pediatric Acute onset Neuropsychiatric Syndrome (PANS). Autoimmune encephalitis and systemic autoimmune diseases or other autoimmune brain diseases, such as multiple sclerosis, have also been reported to sometimes present with obsessive-compulsive symptoms (OCS). Subgroups of patients with OCD show elevated proinflammatory cytokines and autoantibodies against targets that include the basal ganglia. In this conceptual review paper, the clinical manifestations, pathophysiological considerations, diagnostic investigations, and treatment approaches of immune-related secondary OCD are summarized. The novel concept of "autoimmune OCD" is proposed for a small subgroup of OCD patients, and clinical signs based on the PANDAS/PANS criteria and from recent experience with autoimmune encephalitis and autoimmune psychosis are suggested. Red flag signs for "autoimmune OCD" could include (sub)acute onset, unusual age of onset, atypical presentation of OCS with neuropsychiatric features (e.g., disproportionate cognitive deficits) or accompanying neurological symptoms (e.g., movement disorders), autonomic dysfunction, treatment resistance, associations of symptom onset with infections such as group A streptococcus, comorbid autoimmune diseases or malignancies. Clinical investigations may also reveal alterations such as increased levels of anti-basal ganglia or dopamine receptor antibodies or inflammatory changes in the basal ganglia in neuroimaging. Based on these red flag signs, the criteria for a possible, probable, and definite autoimmune OCD subtype are proposed.
Identifiants
pubmed: 35013105
doi: 10.1038/s41398-021-01700-4
pii: 10.1038/s41398-021-01700-4
pmc: PMC8744027
doi:
Substances chimiques
Autoantibodies
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
5Informations de copyright
© 2021. The Author(s).
Références
Abramowitz JS, Taylor S, McKay D. Obsessive-compulsive disorder. Lancet. 2009;374:491–9.
pubmed: 19665647
doi: 10.1016/S0140-6736(09)60240-3
Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15:53–63.
pubmed: 18725912
doi: 10.1038/mp.2008.94
Adam Y, Meinlschmidt G, Gloster AT, Lieb R. Obsessive-compulsive disorder in the community: 12-month prevalence, comorbidity and impairment. Soc Psychiatry Psychiatr Epidemiol. 2012;47:339–49.
pubmed: 21287144
doi: 10.1007/s00127-010-0337-5
Glazier K, Calixte RM, Rothschild R, Pinto A. High rates of OCD symptom misidentification by mental health professionals. Ann Clin Psychiatry. 2013;25:201–9.
pubmed: 23926575
Grant JE. Clinical practice: obsessive-compulsive disorder. N Engl J Med. 2014;371:646–53.
pubmed: 25119610
doi: 10.1056/NEJMcp1402176
Stein DJ, Costa D, Lochner C, Miguel EC, Reddy Y, Shavitt RG, et al. Obsessive-compulsive disorder. Nat Rev Dis Primers. 2019;5:52.
pubmed: 31371720
pmcid: 7370844
doi: 10.1038/s41572-019-0102-3
Rasmussen SA, Eisen JL. The epidemiology and clinical features of obsessive compulsive disorder. Psychiatr Clin North Am. 1992;15:743–58.
pubmed: 1461792
doi: 10.1016/S0193-953X(18)30205-3
Anholt GE, Aderka IM, van Balkom AJ, Smit JH, Schruers K, van der Wee NJ, et al. Age of onset in obsessive-compulsive disorder: admixture analysis with a large sample. Psychol Med. 2014;44:185–94.
pubmed: 23517651
doi: 10.1017/S0033291713000470
American Psychiatric Association; DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; 947p.
Robbins TW, Vaghi MM, Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron. 2019;102:27–47.
pubmed: 30946823
doi: 10.1016/j.neuron.2019.01.046
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, et al. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: neuroimaging and genetics. World J Biol Psychiatry. 2016;17:321–65.
pubmed: 27403679
doi: 10.1080/15622975.2016.1181783
Pauls DL. The genetics of obsessive-compulsive disorder: a review. Dialogues Clin Neurosci. 2010;12:149–63.
pubmed: 20623920
pmcid: 3181951
doi: 10.31887/DCNS.2010.12.2/dpauls
Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011;132:314–32.
pubmed: 21963369
pmcid: 3205262
doi: 10.1016/j.pharmthera.2011.09.006
Schiele MA, Thiel C, Deckert J, Zaudig M, Berberich G, Domschke K. Monoamine oxidase A hypomethylation in obsessive-compulsive disorder: reversibility by successful psychotherapy?. Int J Neuropsychopharmacol. 2020;23:319–23.
pubmed: 32133483
pmcid: 7251630
doi: 10.1093/ijnp/pyaa016
Schiele MA, Thiel C, Kollert L, Fürst L, Putschin L, Kehle R. et al. Oxytocin receptor gene DNA methylation: a biomarker of Treatment response in obsessive-compulsive disorder?. Psychother Psychosom. 2020;11:1–7.
Schiele MA, Thiel C, Weidner M, Endres D, Zaudig M, Berberich G. et al. Serotonin transporter gene promoter hypomethylation in obsessive-compulsive disorder - Predictor of impaired response to exposure treatment?. J Psychiatr Res. 2020;132:18–22.
pubmed: 33035761
doi: 10.1016/j.jpsychires.2020.09.034
Simmler LD, Ozawa T. Neural circuits in goal-directed and habitual behavior: Implications for circuit dysfunction in obsessive-compulsive disorder. Neurochem Int. 2019;129:104464.
pubmed: 31078577
doi: 10.1016/j.neuint.2019.104464
Salkovskis PM, Forrester E, Richards C. Cognitive-behavioural approach to understanding obsessional thinking. Br J Psychiatry Suppl. 1998;35:53–63.
doi: 10.1192/S0007125000297900
Gerentes M, Pelissolo A, Rajagopal K, Tamouza R, Hamdani N. Obsessive-compulsive disorder: autoimmunity and neuroinflammation. Curr Psychiatry Rep. 2019;21:78.
pubmed: 31367805
doi: 10.1007/s11920-019-1062-8
Real E, Labad J, Alonso P, Segalàs C, Jiménez-Murcia S, Bueno B. et al. Stressful life events at onset of obsessive-compulsive disorder are associated with a distinct clinical pattern. Depress Anxiety. 2011;28:367–76.
pubmed: 21308889
doi: 10.1002/da.20792
van Oudheusden L, Eikelenboom M, van Megen H, Visser H, Schruers K, Hendriks GJ. et al. Chronic obsessive–compulsive disorder: prognostic factors. Psychol Med. 2018;48:2213–22.
pubmed: 29310732
doi: 10.1017/S0033291717003701
Skapinakis P, Caldwell DM, Hollingworth W, Bryden P, Fineberg NA, Salkovskis P. et al. Pharmacological and psychotherapeutic interventions for management of obsessive-compulsive disorder in adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2016;3:730–9.
pubmed: 27318812
pmcid: 4967667
doi: 10.1016/S2215-0366(16)30069-4
Hirschtritt ME, Bloch MH, Mathews CA. Obsessive-compulsive disorder: advances in diagnosis and treatment. JAMA. 2017;317:1358–67.
pubmed: 28384832
doi: 10.1001/jama.2017.2200
da Rocha FF, Correa H, Teixeira AL. Obsessive-compulsive disorder and immunology: a review. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1139–46.
pubmed: 18262706
doi: 10.1016/j.pnpbp.2007.12.026
Marazziti D, Mucci F, Fontenelle LF. Immune system and obsessive-compulsive disorder. Psychoneuroendocrinology. 2018;93:39–44.
pubmed: 29689421
doi: 10.1016/j.psyneuen.2018.04.013
Lamothe H, Baleyte JM, Smith P, Pelissolo A, Mallet L. Individualized immunological data for precise classification of OCD patients. Brain Sci. 2018;8:149.
pmcid: 6119917
doi: 10.3390/brainsci8080149
Swedo SE. Sydenham’s chorea. A model for childhood autoimmune neuropsychiatric disorders. JAMA. 1994;272:1788–91.
pubmed: 7661914
doi: 10.1001/jama.1994.03520220082035
Swedo SE, Leonard HL, Mittleman BB, Allen AJ, Rapoport JL, Dow SP. et al. Identification of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections by a marker associated with rheumatic fever. Am J Psychiatry. 1997;154:110–2.
pubmed: 8988969
doi: 10.1176/ajp.154.1.110
Swedo SE, Leonard HL, Garvey M, Mittleman B, Allen AJ, Perlmutter S. et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry. 1998;155:264–71.
pubmed: 9464208
doi: 10.1176/ajp.155.2.264
Hyman SE. PANDAS: too narrow a view of the neuroimmune landscape. Am J Psychiatry. 2021;178:5–7.
pubmed: 33384008
doi: 10.1176/appi.ajp.2020.20111598
Bechter K. The challenge of assessing mild neuroinflammation in severe mental disorders. Front Psychiatry. 2020;11:773.
pubmed: 32973573
pmcid: 7469926
doi: 10.3389/fpsyt.2020.00773
Orlovska S, Vestergaard CH, Bech BH, Nordentoft M, Vestergaard M, Benros ME. Association of Streptococcal throat infection with mental disorders: testing key aspects of the PANDAS hypothesis in a nationwide study. JAMA Psychiatry. 2017;74:740–6.
pubmed: 28538981
pmcid: 5710247
doi: 10.1001/jamapsychiatry.2017.0995
Westwell-Roper C, Williams KA, Samuels J, Bienvenu OJ, Cullen B, Goes FS. et al. Immune-related comorbidities in childhood-onset obsessive compulsive disorder: lifetime prevalence in the obsessive compulsive disorder collaborative genetics association study. J Child Adolesc Psychopharmacol. 2019;29:615–24.
pubmed: 31170001
pmcid: 6786333
doi: 10.1089/cap.2018.0140
Chang K, Frankovich J, Cooperstock M, Cunningham MW, Latimer ME, Murphy TK. et al. PANS Collaborative Consortium. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference. J Child Adolesc Psychopharmacol. 2015;25:3–13.
pubmed: 25325534
pmcid: 4340805
doi: 10.1089/cap.2014.0084
Pallanti S, Grassi E, Makris N, Gasic GP, Hollander E. Neurocovid-19: a clinical neuroscience-based approach to reduce SARS-CoV-2 related mental health sequelae. J Psychiatr Res. 2020;130:215–7.
pubmed: 32836010
pmcid: 7428715
doi: 10.1016/j.jpsychires.2020.08.008
Steardo L,Jr, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry. 2020;10:261.
pubmed: 32732883
pmcid: 7391235
doi: 10.1038/s41398-020-00949-5
Franke C, Ferse C, Kreye J, Reincke SM, Sanchez-Sendin E, Rocco A. et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2020;23:S0889.
Scheid R, Voltz R, Guthke T, Bauer J, Sammler D, von Cramon DY. Neuropsychiatric findings in anti-Ma2-positive paraneoplastic limbic encephalitis. Neurology. 2003;61:1159–61.
pubmed: 14581698
doi: 10.1212/01.WNL.0000085873.45099.E2
Pettingill P, Kramer HB, Coebergh JA, Pettingill R, Maxwell S, Nibber A, et al. Antibodies to GABAA receptor α1 and γ2 subunits: clinical and serologic characterization. Neurology. 2015;84:1233–41.
pubmed: 25636713
pmcid: 4366091
doi: 10.1212/WNL.0000000000001326
Al-Diwani A, Handel A, Townsend L, Pollak T, Leite MI, Harrison PJ, et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry. 2019;6:235–46.
pubmed: 30765329
pmcid: 6384244
doi: 10.1016/S2215-0366(19)30001-X
Cainelli E, Nosadini M, Sartori S, Suppiej A. Neuropsychological and psychopathological profile of anti-Nmdar encephalitis: a possible pathophysiological model for pediatric neuropsychiatric disorders. Arch Clin Neuropsychol. 2019;34:1309–19.
pubmed: 30418503
doi: 10.1093/arclin/acy088
Endres D, Maier V, Leypoldt F, Wandinger KP, Lennox B, Pollak TA, et al. Autoantibody-associated psychiatric syndromes: a systematic literature review resulting in 145 cases. Psychol Med. 2020;7:1–12.
Foroughipour M, Behdani F, Hebrani P, Marvast MN, Esmatinia F, Akhavanrezayat A. Frequency of obsessive-compulsive disorder in patients with multiple sclerosis: a cross-sectional study. J Res Med Sci. 2012;17:248–53.
pubmed: 23267376
pmcid: 3527042
Pérez-Vigil A, Fernández de la Cruz L, Brander G, Isomura K, Gromark C, Mataix-Cols D. The link between autoimmune diseases and obsessive-compulsive and tic disorders: a systematic review. Neurosci Biobehav Rev. 2016;71:542–62.
pubmed: 27687817
doi: 10.1016/j.neubiorev.2016.09.025
Ong LTC, Galambos G, Brown DA. Primary Sjogren’s syndrome associated with treatment-resistant obsessive-compulsive disorder. Front Psychiatry. 2017;8:124.
pubmed: 28744230
pmcid: 5504162
doi: 10.3389/fpsyt.2017.00124
Lüngen EM, Maier V, Venhoff N, Salzer U, Dersch R, Berger B, et al. Systemic lupus erythematosus with isolated psychiatric symptoms and antinuclear antibody detection in the cerebrospinal fluid. Front Psychiatry. 2019;10:226.
pubmed: 31105597
pmcid: 6494960
doi: 10.3389/fpsyt.2019.00226
Mataix-Cols D, Frans E, Pérez-Vigil A, Kuja-Halkola R, Gromark C, Isomura K, et al. A total-population multigenerational family clustering study of autoimmune diseases in obsessive-compulsive disorder and Tourette’s/chronic tic disorders. Mol Psychiatry. 2018;23:1652–8.
pubmed: 29133949
doi: 10.1038/mp.2017.215
Wang LY, Chen SF, Chiang JH, Hsu CY, Shen YC. Systemic autoimmune diseases are associated with an increased risk of obsessive-compulsive disorder: a nationwide population-based cohort study. Soc Psychiatry Psychiatr Epidemiol. 2019;54:507–16.
pubmed: 30406283
doi: 10.1007/s00127-018-1622-y
Freire de Carvalho J, Machado Ribeiro F. Sjögren syndrome associated with obsessive-compulsive disorder. Eur Rev Med Pharmacol Sci. 2020;24:11801–3.
pubmed: 33275251
Cappi C, Brentani H, Lima L, Sanders SJ, Zai G, Diniz BJ, et al. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways. Transl Psychiatry. 2016;6:e764.
pubmed: 27023170
pmcid: 4872454
doi: 10.1038/tp.2016.30
Rodriguez N, Morer A, González-Navarro EA, Gassó P, Boloc D, Serra-Pagès C, et al. Human-leukocyte antigen class II genes in early-onset obsessive-compulsive disorder. World J Biol Psychiatry. 2019;20:352–8.
pubmed: 28562177
doi: 10.1080/15622975.2017.1327669
Herdi O, Sayar-Akaslan D, İlhan RS, Çolak B, Duman B. Associations between subclinical inflammatory markers and OCD: a retrospective study. Psychiatry Res. 2020;290:113065.
pubmed: 32470720
doi: 10.1016/j.psychres.2020.113065
Turna J, Grosman Kaplan K, Anglin R, Patterson B, Soreni N, Bercik P, et al. The gut microbiome and inflammation in obsessive-compulsive disorder patients compared to age- and sex-matched controls: a pilot study. Acta Psychiatr Scand. 2020;142:337–47.
pubmed: 32307692
doi: 10.1111/acps.13175
Cosco TD, Pillinger T, Emam H, Solmi M, Budhdeo S, Matthew Prina A, et al. Immune aberrations in obsessive-compulsive disorder: a systematic review and meta-analysis. Mol Neurobiol. 2019;56:4751–9.
pubmed: 30382535
doi: 10.1007/s12035-018-1409-x
Gray SM, Bloch MH. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr Psychiatry Rep. 2012;14:220–8.
pubmed: 22477442
pmcid: 3625952
doi: 10.1007/s11920-012-0272-0
Jiang C, Ma X, Qi S, Han G, Li Y, Liu Y, et al. Association between TNF-α-238G/A gene polymorphism and OCD susceptibility: a meta-analysis. Medicine. 2018;97:e9769.
pubmed: 29384866
pmcid: 5805438
doi: 10.1097/MD.0000000000009769
Pearlman DM, Vora HS, Marquis BG, Najjar S, Dudley LA. Anti-basal ganglia antibodies in primary obsessive-compulsive disorder: systematic review and meta-analysis. Br J Psychiatry. 2014;205:8–16.
pubmed: 24986387
doi: 10.1192/bjp.bp.113.137018
Sutterland AL, Fond G, Kuin A, Koeter MW, Lutter R, van Gool T, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand. 2015;132:161–79.
pubmed: 25877655
doi: 10.1111/acps.12423
Ebrahimi Taj F, Noorbakhsh S, Ghavidel Darestani S, Shirazi E, Javadinia S, Group A. β-hemolytic Streptococcal infection in children and the resultant neuro-psychiatric disorder; a cross sectional study; Tehran, Iran. Basic Clin Neurosci. 2015;6:38–43.
pubmed: 27504155
pmcid: 4741265
Cox CJ, Zuccolo AJ, Edwards EV, Mascaro-Blanco A, Alvarez K, Stoner J, et al. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2015;25:76–85.
pubmed: 25658702
pmcid: 4340634
doi: 10.1089/cap.2014.0048
Nicolini H, López Y, Genis-Mendoza AD, Manrique V, Lopez-Canovas L, Niubo E, et al. Detection of anti-streptococcal, antienolase, and anti-neural antibodies in subjects with early-onset psychiatric disorders. Actas Esp Psiquiatr. 2015;43:35–41.
pubmed: 25812540
Bhattacharyya S, Khanna S, Chakrabarty K, Mahadevan A, Christopher R, Shankar SK. Anti-brain autoantibodies and altered excitatory neurotransmitters in obsessive-compulsive disorder. Neuropsychopharmacology. 2009;34:2489–96.
pubmed: 19675532
doi: 10.1038/npp.2009.77
Khanna S, Ravi V, Shenoy PK, Chandramuki A, Channabasavanna SM. Cerebrospinal fluid viral antibodies in obsessive-compulsive disorder in an Indian population. Biol Psychiatry. 1997;41:883–90.
pubmed: 9099415
doi: 10.1016/S0006-3223(96)00174-6
Bodner SM, Morshed SA, Peterson BS. The question of PANDAS in adults. Biol Psychiatry. 2001;49:807–10.
pubmed: 11331090
doi: 10.1016/S0006-3223(00)01127-6
Bechter K, Bindl A, Horn M, Schreiner V. [Therapy-resistant depression with fatigue. A case of presumed streptococcal-associated autoimmune disorder]. Nervenarzt. 2007;78:340–1.
Greenberg BD, Murphy DL, Swedo SE. Symptom exacerbation of vocal tics and other symptoms associated with streptococcal pharyngitis in a patient with obsessive-compulsive disorder and tics. Am J Psychiatry. 1998;155:1459–60.
pubmed: 9766784
doi: 10.1176/ajp.155.10.1459
Nave AH, Harmel P, Buchert R, Harms L. Altered cerebral glucose metabolism normalized in a patient with a pediatric autoimmune neuropsychiatric disorder after streptococcal infection (PANDAS)-like condition following treatment with plasmapheresis: a case report. BMC Neurol. 2018;18:60.
pubmed: 29720109
pmcid: 5930772
doi: 10.1186/s12883-018-1063-y
Swedo SE, Leckman JF, Rose NR From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome) Pediatr Therapeut. 2012, 2:2. https://doi.org/10.4172/2161-0665.1000113 .
Kim Y, Ko TS, Yum MS, Jung AY, Kim HW. Obsessive-compulsive disorder related to mycoplasma-associated autoimmune encephalopathy with basal ganglia involvement. J Child Adolesc Psychopharmacol. 2016;26:400–2.
pubmed: 26872247
doi: 10.1089/cap.2015.0080
Johnson M, Fernell E, Preda I, Wallin L, Fasth A, Gillberg C, et al. Paediatric acute-onset neuropsychiatric syndrome in children and adolescents: an observational cohort study. Lancet Child Adolesc Health. 2019;3:175–80.
pubmed: 30704875
doi: 10.1016/S2352-4642(18)30404-8
Sigra S, Hesselmark E, Bejerot S. Treatment of PANDAS and PANS: a systematic review. Neurosci Biobehav Rev. 2018;86:51–65.
pubmed: 29309797
doi: 10.1016/j.neubiorev.2018.01.001
Muehlschlegel S, Okun MS, Foote KD, Coco D, Yachnis AT, Fernandez HH. Paraneoplastic chorea with leukoencephalopathy presenting with obsessive-compulsive and behavioral disorder. Mov Disord. 2005;20:1523–7.
pubmed: 16037914
doi: 10.1002/mds.20570
Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15:391–404.
pubmed: 26906964
pmcid: 5066574
doi: 10.1016/S1474-4422(15)00401-9
Herken J, Prüss H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry. 2017;8:25.
pubmed: 28261116
pmcid: 5311041
doi: 10.3389/fpsyt.2017.00025
Pollak TA, Lennox BR, Müller S, Benros ME, Prüss H, Tebartz van Elst L, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry. 2020;7:93–108.
pubmed: 31669058
doi: 10.1016/S2215-0366(19)30290-1
Lepri G, Rigante D, Bellando Randone S, Meini A, Ferrari A, Tarantino G, et al. Clinical-serological characterization and treatment outcome of a large cohort of Italian children with pediatric autoimmune neuropsychiatric disorder associated with Streptococcal infection and pediatric acute neuropsychiatric syndrome. J Child Adolesc Psychopharmacol. 2019;29:608–14.
pubmed: 31140830
doi: 10.1089/cap.2018.0151
Esposito S, Bianchini S, Baggi E, Fattizzo M, Rigante D. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: an overview. Eur J Clin Microbiol Infect Dis. 2014;33:2105–9.
pubmed: 24953744
doi: 10.1007/s10096-014-2185-9
Frick LR, Rapanelli M, Jindachomthong K, Grant P, Leckman JF, Swedo S, et al. Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum. Brain Behav Immun. 2018;69:304–11.
pubmed: 29233751
doi: 10.1016/j.bbi.2017.12.004
Brimberg L, Benhar I, Mascaro-Blanco A, Alvarez K, Lotan D, Winter C, et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology. 2012;37:2076–87.
pubmed: 22534626
pmcid: 3398718
doi: 10.1038/npp.2012.56
Morris-Berry CM, Pollard M, Gao S, Thompson C, Singer HS.Tourette Syndrome Study Group. Anti-streptococcal, tubulin, and dopamine receptor 2 antibodies in children with PANDAS and Tourette syndrome: single-point and longitudinal assessments. J Neuroimmunol. 2013;264:106–13.
pubmed: 24080310
doi: 10.1016/j.jneuroim.2013.09.010
Chain JL, Alvarez K, Mascaro-Blanco A, Reim S, Bentley R, Hommer R, et al. Autoantibody biomarkers for basal ganglia encephalitis in sydenham chorea and pediatric autoimmune neuropsychiatric disorder associated with Streptococcal infections. Front Psychiatry. 2020;11:564.
pubmed: 32670106
pmcid: 7328706
doi: 10.3389/fpsyt.2020.00564
Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9:914–20.
pubmed: 12819778
doi: 10.1038/nm892
Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97:839–87.
pubmed: 28298428
pmcid: 5539405
doi: 10.1152/physrev.00010.2016
Xu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, et al. Antibodies from children with PANDAS bind specifically to striatal cholinergic interneurons and alter their activity. Am J Psychiatry. 2020;16:appiajp202019070698–64.
Platt MP, Agalliu D, Cutforth T. Hello from the other side: how autoantibodies circumvent the blood-brain barrier in autoimmune encephalitis. Front Immunol. 2017;21:8–442.
Platt MP, Bolding KA, Wayne CR, Chaudhry S, Cutforth T, Franks KM, et al. Th17 lymphocytes drive vascular and neuronal deficits in a mouse model of postinfectious autoimmune encephalitis. Proc Natl Acad Sci USA. 2020;117:6708–16.
pubmed: 32161123
pmcid: 7104239
doi: 10.1073/pnas.1911097117
Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126:303–17.
pubmed: 26657857
doi: 10.1172/JCI80792
Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol. 2020;16:565–79.
pubmed: 32884126
pmcid: 8456518
doi: 10.1038/s41584-020-0480-7
Barennes et al. Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nat Biotechnol. 2020 Sep 7. https://doi.org/10.1038/s41587-020-0656-3 .
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov. 2018;17:823–44.
pubmed: 30310234
doi: 10.1038/nrd.2018.148
Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15:283–94.
pubmed: 25882245
doi: 10.1038/nri3823
Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia. 2020;63:1808–21.
pubmed: 32607749
doi: 10.1007/s00125-020-05200-w
Lim JA, Lee ST, Moon J, Jun JS, Park BS, Byun JI, et al. New feasible treatment for refractory autoimmune encephalitis: Low-dose interleukin-2. J Neuroimmunol. 2016;299:107–11.
pubmed: 27725107
doi: 10.1016/j.jneuroim.2016.09.001
Prüss H. Postviral autoimmune encephalitis: manifestations in children and adults. Curr Opin Neurol. 2017;30:327–33.
pubmed: 28234798
doi: 10.1097/WCO.0000000000000445
Prüss H, Finke C, Höltje M, Hofmann J, Klingbeil C, Probst C, et al. N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol. 2012;72:902–11.
pubmed: 23280840
pmcid: 3725636
doi: 10.1002/ana.23689
Armangue T, Spatola M, Vlagea A, Mattozzi S, Cárceles-Cordon M, Martinez-Heras E, et al. Spanish Herpes Simplex Encephalitis Study Group. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17:760–72.
pubmed: 30049614
pmcid: 6128696
doi: 10.1016/S1474-4422(18)30244-8
Tamouza R, Krishnamoorthy R, Leboyer M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav Immun. 2021;91:731–9.
pubmed: 33031918
doi: 10.1016/j.bbi.2020.09.033
Donadi EA, Smith AG, Louzada-Júnior P, Voltarelli JC, Nepom GT. HLA class I and class II profiles of patients presenting with Sydenham’s chorea. J Neurol. 2000;247:122–8.
pubmed: 10751115
Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther. 2003;5:R340–6.
pubmed: 14680508
pmcid: 333411
doi: 10.1186/ar1000
Costas J, Carrera N, Alonso P, Gurriarán X, Segalàs C, Real E, et al. Exon-focused genome-wide association study of obsessive-compulsive disorder and shared polygenic risk with schizophrenia. Transl Psychiatry. 2016;6:e768.
pubmed: 27023174
pmcid: 4872458
doi: 10.1038/tp.2016.34
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43:969–76.
doi: 10.1038/ng.940
Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–12.
pubmed: 26272854
doi: 10.1016/j.jaut.2015.07.014
Reveille JD. The genetic contribution to the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 1998;10:187–200.
pubmed: 9608321
doi: 10.1097/00002281-199805000-00007
Holoshitz J. The rheumatoid arthritis HLA-DRB1 shared epitope. Curr Opin Rheumatol. 2010;22:293–8.
pubmed: 20061955
pmcid: 2921962
doi: 10.1097/BOR.0b013e328336ba63
Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW, et al. Strong association of the third hypervariable region of HLA-DR beta 1 with autism. J Neuroimmunol. 1996;67:97–102.
pubmed: 8765331
doi: 10.1016/0165-5728(96)00052-5
Bedford SA, Hunsche MC, Kerns CM. Co-occurrence, assessment and treatment of obsessive compulsive disorder in children and adults with autism spectrum disorder. Curr Psychiatry Rep. 2020;22:53.
pubmed: 32803413
doi: 10.1007/s11920-020-01176-x
Kotb M, Norrby-Teglund A, McGeer A, Green K, Low DE. Association of human leukocyte antigen with outcomes of infectious diseases: the streptococcal experience. Scand J Infect Dis. 2003;35:665–9.
pubmed: 14620152
doi: 10.1080/00365540310015962
Endres D, Matysik M, Feige B, Venhoff N, Schweizer T, Michel M, et al. Diagnosing organic causes of schizophrenia spectrum disorders: findings from a one-year cohort of the Freiburg diagnostic protocol in psychosis (FDPP). Diagnostics. 2020;10:691.
pmcid: 7555162
doi: 10.3390/diagnostics10090691
Endres D, Leypoldt F, Bechter K, Hasan A, Steiner J, Domschke K, et al. Autoimmune encephalitis as a differential diagnosis of schizophreniform psychosis: clinical symptomatology, pathophysiology, diagnostic approach, and therapeutic considerations. Eur Arch Psychiatry Clin Neurosci. 2020;270:803–18.
pubmed: 32166503
pmcid: 7474714
doi: 10.1007/s00406-020-01113-2
Perani D, Colombo C, Bressi S, Bonfanti A, Grassi F, Scarone S, et al. [18F]FDG PET study in obsessive-compulsive disorder. A clinical/metabolic correlation study after treatment. Br J Psychiatry. 1995;166:244–50.
pubmed: 7728370
doi: 10.1192/bjp.166.2.244
Attwells S, Setiawan E, Wilson AA, Rusjan PM, Mizrahi R, Miler L, et al. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry. 2017;74:833–40.
pubmed: 28636705
pmcid: 5710556
doi: 10.1001/jamapsychiatry.2017.1567
Endres D, Prüss H, Rauer S, Süß P, Venhoff N, Feige B, et al. Probable autoimmune catatonia with antibodies against cilia on hippocampal granule cells and highly suspicious cerebral FDG-positron emission tomography findings. Biol Psychiatry. 2020;87:e29–e31.
pubmed: 32122620
doi: 10.1016/j.biopsych.2019.12.020
Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7:1064–74.
pubmed: 33098761
pmcid: 7893630
doi: 10.1016/S2215-0366(20)30255-8
Connery K, Tippett M, Delhey LM, Rose S, Slattery JC, Kahler SG, et al. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl Psychiatry. 2018;8:148.
pubmed: 30097568
pmcid: 6086890
doi: 10.1038/s41398-018-0214-7
Frye RE, Shimasaki C. Reliability of the Cunningham panel. Transl Psychiatry. 2019;9:129.
pubmed: 30962420
pmcid: 6453973
doi: 10.1038/s41398-019-0462-1
Shimasaki C, Frye RE, Trifiletti R, Cooperstock M, Kaplan G, Melamed I, et al. Evaluation of the Cunningham Panel™ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J Neuroimmunol. 2020;339:577138.
pubmed: 31884258
doi: 10.1016/j.jneuroim.2019.577138
Hesselmark E, Bejerot S. Biomarkers for diagnosis of Pediatric Acute Neuropsychiatric Syndrome (PANS) - sensitivity and specificity of the Cunningham Panel. J Neuroimmunol. 2017;312:31–37.
pubmed: 28919236
doi: 10.1016/j.jneuroim.2017.09.002
Kreye J, Wenke NK, Chayka M, Leubner J, Murugan R, Maier N, et al. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain. 2016;139:2641–52.
pubmed: 27543972
doi: 10.1093/brain/aww208
Jézéquel J, Rogemond V, Pollak T, Lepleux M, Jacobson L, Gréa H, et al. Cell- and single molecule-based methods to detect anti-N-methyl-D-aspartate receptor autoantibodies in patients with first-episode psychosis from the OPTiMiSE project. Biol Psychiatry. 2017;82:766–72.
pubmed: 28780967
doi: 10.1016/j.biopsych.2017.06.015
Lennox BR, Palmer-Cooper EC, Pollak T, Hainsworth J, Marks J, Jacobson L, et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case-control study. Lancet Psychiatry. 2017;4:42–48.
pubmed: 27965002
doi: 10.1016/S2215-0366(16)30375-3
Endres D, Meixensberger S, Dersch R, Feige B, Stich O, Venhoff N, et al. Cerebrospinal fluid, antineuronal autoantibody, EEG, and MRI findings from 992 patients with schizophreniform and affective psychosis. Transl Psychiatry. 2020;10:279.
pubmed: 32782247
pmcid: 7419532
doi: 10.1038/s41398-020-00967-3
Giedd JN, Rapoport JL, Leonard HL, Richter D, Swedo SE. Case study: acute basal ganglia enlargement and obsessive-compulsive symptoms in an adolescent boy. J Am Acad Child Adolesc Psychiatry. 1996;35:913–5.
pubmed: 8768351
doi: 10.1097/00004583-199607000-00017
Giedd JN, Rapoport JL, Garvey MA, Perlmutter S, Swedo SE. MRI assessment of children with obsessive-compulsive disorder or tics associated with streptococcal infection. Am J Psychiatry. 2000;157:281–3.
pubmed: 10671403
doi: 10.1176/appi.ajp.157.2.281
Endres D, Perlov E, Stich O, Rauer S, Maier S, Waldkircher Z, et al. Hypoglutamatergic state is associated with reduced cerebral glucose metabolism in anti-NMDA receptor encephalitis: a case report. BMC Psychiatry. 2015;15:186.
pubmed: 26231521
pmcid: 4522073
doi: 10.1186/s12888-015-0552-4
Hirschtritt ME, Hammond CJ, Luckenbaugh D, Buhle J, Thurm AE, Casey BJ, et al. Executive and attention functioning among children in the PANDAS subgroup. Child Neuropsychol. 2009;15:179–94.
pubmed: 18622810
doi: 10.1080/09297040802186899
Lewin AB, Storch EA, Mutch PJ, Murphy TK. Neurocognitive functioning in youth with pediatric autoimmune neuropsychiatric disorders associated with streptococcus. J Neuropsychiatry Clin Neurosci. 2011;23:391–8.
pubmed: 22231309
doi: 10.1176/jnp.23.4.jnp391
Colvin MK, Erwin S, Alluri PR, Laffer A, Pasquariello K, Williams KA. Cognitive, graphomotor, and psychosocial challenges in pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). J Neuropsychiatry Clin Neurosci. 2020;2:appineuropsych20030065–97.
Laplane D. [Obsessive-compulsive disorders caused by basal ganglia diseases]. Rev Neurol. 1994;150:594–8.
pubmed: 7754296
Endres D, Perlov E, Riering AN, Maier V, Stich O, Dersch R, et al. Steroid-responsive chronic schizophreniform syndrome in the context of mildly increased antithyroid peroxidase antibodies. Front Psychiatry. 2017;8:64.
pubmed: 28484400
pmcid: 5399039
doi: 10.3389/fpsyt.2017.00064
Leypoldt F, Buchert R, Kleiter I, Marienhagen J, Gelderblom M, Magnus T, et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry. 2012;83:681–6.
pubmed: 22566598
doi: 10.1136/jnnp-2011-301969
Baumgartner A, Rauer S, Mader I, Meyer PT. Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol. 2013;260:2744–53.
pubmed: 23900756
doi: 10.1007/s00415-013-7048-2
Deuschl C, Rüber T, Ernst L, Fendler WP, Kirchner J, Mönninghoff C, et al. 18F-FDG-PET/MRI in the diagnostic work-up of limbic encephalitis. PLoS ONE. 2020;15:e0227906.
pubmed: 31951636
pmcid: 6968877
doi: 10.1371/journal.pone.0227906
Thienemann M, Murphy T, Leckman J, Shaw R, Williams K, Kapphahn C, et al. Clinical management of pediatric acute-onset neuropsychiatric syndrome: part I-psychiatric and behavioral interventions. J Child Adolesc Psychopharmacol. 2017;27:566–73.
pubmed: 28722481
pmcid: 5610394
doi: 10.1089/cap.2016.0145
Frankovich J, Swedo S, Murphy T, Dale RC, Agalliu D, Williams K, et al. Clinical management of pediatric acute-onset neuropsychiatric syndrome: part II—use of immunomodulatory therapies. J Child Adolesc Psychopharmacol. 2017, https://doi.org/10.1089/cap.2016.0148. .
Cooperstock MS, Swedo SE, Pasternack MS, Murphy TK, PANS/PANDAS Consortium. Clinical management of pediatric acute-onset neuropsychiatric syndrome: Part III—Treatment and prevention of infections J Child Adolesc Psychopharmacol. 2017, https://doi.org/10.1089/cap.2016.0151. .
Swedo SE, Frankovich J, Murphy TK. Overview of treatment of pediatric acute-onset neuropsychiatric syndrome. J Child Adolesc Psychopharmacol. 2017;27:562–5.
pubmed: 28722464
pmcid: 5610386
doi: 10.1089/cap.2017.0042
Perlmutter SJ, Leitman SF, Garvey MA, Hamburger S, Feldman E, Leonard HL, et al. Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood. Lancet. 1999;354:1153–8.
pubmed: 10513708
doi: 10.1016/S0140-6736(98)12297-3
Williams KA, Swedo SE, Farmer CA, Grantz H, Grant PJ, D'Souza P, et al. Randomized, controlled trial of intravenous immunoglobulin for pediatric autoimmune neuropsychiatric disorders associated with Streptococcal infections. J Am Acad Child Adolesc Psychiatry. 2016;55:860–.e2.
pubmed: 27663941
doi: 10.1016/j.jaac.2016.06.017
Murphy TK, Brennan EM, Johnco C, Parker-Athill EC, Miladinovic B, Storch EA, et al. A double-blind randomized placebo-controlled pilot study of azithromycin in youth with acute-onset obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2017;27:640–51.
pubmed: 28358599
doi: 10.1089/cap.2016.0190
Snider LA, Lougee L, Slattery M, Grant P, Swedo SE. Antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Biol Psychiatry. 2005;57:788–92.
pubmed: 15820236
doi: 10.1016/j.biopsych.2004.12.035
Burchi E, Pallanti S. Antibiotics for PANDAS? Limited evidence: review and putative mechanisms of action. Prim Care Companion CNS Disord. 2018;20:17r02232.
pubmed: 29722936
doi: 10.4088/PCC.17r02232
Kreye J, Reincke SM, Kornau HC, Sánchez-Sendin E, Corman VM, Liu H, et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell. 2020;23:S0092-8674(20)31246-0–1069.
Endres D, Werden R, Schweizer T, Schröter N, Schiele MA, Nickel K, et al. Novel neuronal autoantibodies in Huntington’s disease. Biol Psychiatry. 2021;12:S0006-3223(21)00043-3.
Bejerot S, Hesselmark E. The Cunningham Panel is an unreliable biological measure. Transl Psychiatry. 2019;9:49.
pubmed: 30705260
pmcid: 6355775
doi: 10.1038/s41398-019-0413-x
Bejerot S, Klang A, Hesselmark E. The Cunningham Panel: concerns remain. Transl Psychiatry. 2019;9:224.
pubmed: 31506420
pmcid: 6736884
doi: 10.1038/s41398-019-0562-y