Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism.
Cyanogenesis
Dhurrin metabolism
Gene expression
Sorghum
Water-stress
Wild sorghum
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
27 Jan 2022
27 Jan 2022
Historique:
received:
12
08
2021
accepted:
15
01
2022
entrez:
27
1
2022
pubmed:
28
1
2022
medline:
1
2
2022
Statut:
epublish
Résumé
Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.
Identifiants
pubmed: 35084593
doi: 10.1007/s00425-022-03831-4
pii: 10.1007/s00425-022-03831-4
pmc: PMC8795013
doi:
Substances chimiques
Nitriles
0
Water
059QF0KO0R
dhurrin
P5999IY65C
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
51Subventions
Organisme : Australian Research Council
ID : DP180101011
Informations de copyright
© 2022. The Author(s).
Références
Curr Opin Plant Biol. 2010 Jun;13(3):338-47
pubmed: 20197238
Plant J. 2004 Mar;37(6):914-39
pubmed: 14996223
J Exp Bot. 2005 Oct;56(420):2695-703
pubmed: 16131509
Front Plant Sci. 2019 Nov 15;10:1458
pubmed: 31798611
Plant Mol Biol. 2006 May;61(1-2):111-22
pubmed: 16786295
Genes (Basel). 2022 Jan 14;13(1):
pubmed: 35052482
Biochem J. 2015 Aug 1;469(3):375-89
pubmed: 26205491
Methods Mol Biol. 2014;1099:1-5
pubmed: 24243190
J Chem Ecol. 2008 Oct;34(10):1298-301
pubmed: 18758862
Planta. 1998 Oct;206(3):476-8
pubmed: 9763714
Phytochemistry. 1998 Jan;47(2):155-62
pubmed: 9431670
Genome. 2010 Jun;53(6):419-29
pubmed: 20555431
Plant Biotechnol J. 2012 Jan;10(1):54-66
pubmed: 21880107
Plant Signal Behav. 2007 May;2(3):135-8
pubmed: 19516981
Trends Plant Sci. 2010 Dec;15(12):664-74
pubmed: 20846898
Phytochemistry. 2004 Feb;65(3):293-306
pubmed: 14751300
J Chromatogr A. 2005 Aug 26;1085(1):137-42
pubmed: 16106860
Nat Biotechnol. 2018 Oct 01;:
pubmed: 30272678
Plant Physiol. 1997 Dec;115(4):1661-70
pubmed: 9414567
Glob Chang Biol. 2016 Oct;22(10):3461-73
pubmed: 27252148
Tree Physiol. 2002 Sep;22(13):939-45
pubmed: 12204850
J Chem Ecol. 2005 Nov;31(11):2601-20
pubmed: 16273431
Nat Biotechnol. 2016 May;34(5):562-70
pubmed: 27088722
BMC Genomics. 2016 Dec 13;17(1):1021
pubmed: 27964718
Plant Physiol Biochem. 2016 Jul;104:81-91
pubmed: 27017434
Funct Plant Biol. 2018 Jun;45(7):705-718
pubmed: 32291046
J Biol Chem. 1995 Feb 24;270(8):3506-11
pubmed: 7876084
Environ Sci Pollut Res Int. 2018 Nov;25(33):33103-33118
pubmed: 30284160
Mol Biol Rep. 2020 May;47(5):3291-3303
pubmed: 32303956
Adv Exp Med Biol. 2018;1081:189-214
pubmed: 30288711
Front Plant Sci. 2013 Jun 25;4:190
pubmed: 23805145
J Biol Chem. 1999 Dec 10;274(50):35483-91
pubmed: 10585420
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18848-53
pubmed: 18003897
Biochim Biophys Acta. 2014 May;1840(5):1574-82
pubmed: 24246957
J Biol Chem. 1979 Sep 10;254(17):8575-83
pubmed: 468842
Science. 2019 Jun 14;364(6445):1095-1098
pubmed: 31197015
J Exp Bot. 2014 Nov;65(21):6251-63
pubmed: 25381433
BMC Plant Biol. 2018 Oct 26;18(1):258
pubmed: 30367616
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Nat Commun. 2021 Apr 15;12(1):2260
pubmed: 33859207
Plant J. 2018 Jun;94(6):1109-1125
pubmed: 29659075
Plant Physiol. 2002 Jul;129(3):1222-31
pubmed: 12114576
Trends Plant Sci. 2015 Jan;20(1):20-32
pubmed: 25435320
Annu Rev Plant Biol. 2014;65:155-85
pubmed: 24579992
J Exp Bot. 2001 Oct;52(363):1981-9
pubmed: 11559733
Int J Mol Sci. 2020 Jan 24;21(3):
pubmed: 31991584
J Plant Physiol. 2021 Mar-Apr;258-259:153393
pubmed: 33667954
Nature. 2017 Mar 15;543(7645):346-354
pubmed: 28300107
Phytochemistry. 2008 Jan;69(1):88-98
pubmed: 17706731
BMC Plant Biol. 2012 Jul 29;12:121
pubmed: 22838966
Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9740-4
pubmed: 7937883
J Exp Bot. 2015 Apr;66(7):1817-32
pubmed: 25697789
BMC Genomics. 2011 Jul 08;12:356
pubmed: 21740560
Nat Plants. 2018 Oct;4(10):766-770
pubmed: 30287957
PLoS One. 2013 Jul 29;8(7):e70321
pubmed: 23922980
BMC Genomics. 2011 Oct 18;12:514
pubmed: 22008187
Plant J. 2016 Oct;88(2):247-256
pubmed: 27337134
Plant Cell Environ. 2008 Dec;31(12):1781-90
pubmed: 18761701
Ann Bot. 2007 Nov;100(5):975-89
pubmed: 17766842
Plant Physiol. 1979 Jun;63(6):1022-8
pubmed: 16660850
Plant Genome. 2021 Nov;14(3):e20123
pubmed: 34323394
Plant Cell. 2004 Jan;16(1):215-28
pubmed: 14671024
Plant Physiol Biochem. 2013 Dec;73:83-92
pubmed: 24080394
Phytochemistry. 2011 Dec;72(17):2113-23
pubmed: 21620426
Plant Physiol. 1991 May;96(1):10-7
pubmed: 16668136
Phytochemistry. 2021 Apr;184:112645
pubmed: 33482417
Plant Physiol. 2005 Sep;139(1):363-74
pubmed: 16126856
Funct Plant Biol. 2017 Feb;44(2):253-266
pubmed: 32480561
BMC Plant Biol. 2020 Apr 8;20(1):150
pubmed: 32268884
BMC Genomics. 2014 Jun 10;15:456
pubmed: 24916767
Front Plant Sci. 2020 Jul 17;11:1108
pubmed: 32765575
J Chem Ecol. 2002 Jul;28(7):1301-13
pubmed: 12199497
J Exp Bot. 2007;58(11):2983-92
pubmed: 17761731
Plant Mol Biol. 1998 Feb;36(3):393-405
pubmed: 9484480