The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
02 2022
Historique:
received: 12 05 2021
accepted: 10 01 2022
entrez: 8 2 2022
pubmed: 9 2 2022
medline: 1 3 2022
Statut: epublish

Résumé

Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection.

Identifiants

pubmed: 35134097
doi: 10.1371/journal.ppat.1010266
pii: PPATHOGENS-D-21-01013
pmc: PMC8824381
doi:

Substances chimiques

AnkG protein, Coxiella burnetii 0
Bacterial Proteins 0
Ribonucleoproteins, Small Nuclear 0
Type IV Secretion Systems 0
Positive Transcriptional Elongation Factor B EC 2.7.11.-
DDX21 protein, human EC 3.6.1.-
DEAD-box RNA Helicases EC 3.6.4.13

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1010266

Déclaration de conflit d'intérêts

The authors declare to have no competing interests.

Références

Cell Host Microbe. 2013 Apr 17;13(4):395-405
pubmed: 23601102
Sci Rep. 2019 Aug 29;9(1):12516
pubmed: 31467394
Autophagy. 2021 Mar;17(3):706-722
pubmed: 32116095
Mol Microbiol. 2018 Feb;107(4):455-471
pubmed: 29235173
Nat Chem Biol. 2018 Feb;14(2):163-170
pubmed: 29251720
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18997-9001
pubmed: 20944063
PLoS Pathog. 2014 Jul 31;10(7):e1004286
pubmed: 25080348
Infect Immun. 2015 Feb;83(2):661-70
pubmed: 25422265
Mol Cell. 2008 Mar 14;29(5):588-99
pubmed: 18249148
Cell Cycle. 2016 Aug 17;15(16):2115-2123
pubmed: 27152730
PLoS One. 2016 May 25;11(5):e0155884
pubmed: 27223465
Yale J Biol Med. 2019 Dec 20;92(4):619-628
pubmed: 31866777
Tumour Biol. 2015 Apr;36(4):2809-14
pubmed: 25492483
Infect Immun. 2009 Jun;77(6):2385-91
pubmed: 19307214
Nat Rev Mol Cell Biol. 2015 Mar;16(3):167-77
pubmed: 25693130
Nat Biotechnol. 2013 Jan;31(1):46-53
pubmed: 23222703
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5
pubmed: 27079975
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21755-60
pubmed: 21098666
Infect Immun. 2020 May 20;88(6):
pubmed: 32179584
Nat Biotechnol. 2010 May;28(5):511-5
pubmed: 20436464
J Bacteriol. 2004 Nov;186(21):7344-52
pubmed: 15489446
Infect Immun. 2014 Sep;82(9):3740-52
pubmed: 24958706
Curr Opin Microbiol. 2017 Feb;35:88-99
pubmed: 28319728
Transcription. 2019 Apr;10(2):57-75
pubmed: 30227759
Infect Immun. 2007 Sep;75(9):4263-71
pubmed: 17606599
Microbes Infect. 2016 May;18(5):336-45
pubmed: 26827929
Vet Microbiol. 2015 Dec 14;181(1-2):119-29
pubmed: 26315774
J Bacteriol. 2013 Sep;195(17):3914-24
pubmed: 23813730
BMC Infect Dis. 2013 Oct 21;13:488
pubmed: 24138807
Science. 2008 Jun 20;320(5883):1651-4
pubmed: 18566289
Mol Cell. 2006 Aug 4;23(3):297-305
pubmed: 16885020
Mol Cell. 2020 Mar 5;77(5):1014-1031.e13
pubmed: 32017898
EMBO J. 2019 Jun 3;38(11):
pubmed: 30979778
EMBO J. 2002 Feb 1;21(3):451-60
pubmed: 11823437
Nat Protoc. 2007;2(4):924-32
pubmed: 17446874
Infect Immun. 2014 Jul;82(7):2763-71
pubmed: 24733095
Front Microbiol. 2011 May 02;2:97
pubmed: 21833334
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):E3260-9
pubmed: 27226300
PLoS Pathog. 2011 May;7(5):e1002056
pubmed: 21637816
Clin Microbiol Rev. 2017 Jan;30(1):115-190
pubmed: 27856520
Nucleic Acids Res. 2011 Feb;39(3):1131-41
pubmed: 20843779
Cell Microbiol. 2007 Nov;9(11):2644-57
pubmed: 17587335
J Bacteriol. 2009 Jul;191(13):4232-42
pubmed: 19411324
Nature. 2015 Feb 12;518(7538):249-53
pubmed: 25470060
RNA Biol. 2021 Feb;18(2):290-303
pubmed: 32401147
Clin Infect Dis. 2013 Sep;57(6):836-44
pubmed: 23794723
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13708-13718
pubmed: 32482853
Toxins (Basel). 2020 Mar 31;12(4):
pubmed: 32244550
Clin Microbiol Rev. 1999 Oct;12(4):518-53
pubmed: 10515901
mBio. 2011 Sep 01;2(4):e00175-11
pubmed: 21862628
J Bacteriol. 2019 Nov 5;201(23):
pubmed: 31501284
Infect Immun. 2007 Nov;75(11):5282-9
pubmed: 17709406
Virulence. 2016 May 18;7(4):400-12
pubmed: 26760129
Curr Top Microbiol Immunol. 2017;413:243-268
pubmed: 29536362
Microbes Infect. 2015 Nov-Dec;17(11-12):766-71
pubmed: 26327296
Infect Immun. 2010 Aug;78(8):3465-74
pubmed: 20515926
PLoS Pathog. 2010 Jul 15;6(7):e1000995
pubmed: 20657819
Cell Microbiol. 2013 Apr;15(4):675-87
pubmed: 23126667
Cell Microbiol. 2004 Aug;6(8):743-51
pubmed: 15236641
Cell Microbiol. 2015 Nov;17(11):1640-52
pubmed: 25996657
EMBO Rep. 2013 Aug;14(8):733-40
pubmed: 23797873
PLoS One. 2013;8(1):e54566
pubmed: 23349930
J Virol. 2010 Dec;84(24):12801-9
pubmed: 20926576
PLoS Pathog. 2018 Feb 26;14(3):e1006922
pubmed: 29481553
mBio. 2013 Jan 29;4(1):e00606-12
pubmed: 23362322
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4770-9
pubmed: 24248335
Molecules. 2020 Feb 14;25(4):
pubmed: 32075058
PLoS One. 2012;7(9):e45749
pubmed: 23029222
Cell Microbiol. 2017 Jan;19(1):
pubmed: 27328359
Nat Commun. 2015 Dec 21;6:10205
pubmed: 26687278
mBio. 2019 Aug 27;10(4):
pubmed: 31455655
Cell Host Microbe. 2011 Nov 17;10(5):426-35
pubmed: 22100159
PLoS Pathog. 2021 Jan 21;17(1):e1009184
pubmed: 33476322
Nucleic Acids Res. 2006;34(15):4206-15
pubmed: 16935882
Sci Rep. 2020 Sep 21;10(1):15396
pubmed: 32958854
Appl Environ Microbiol. 2016 May 02;82(10):3042-51
pubmed: 26969695
Int J Epidemiol. 1993 Oct;22(5):945-9
pubmed: 8282477

Auteurs

Arne Cordsmeier (A)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Sven Rinkel (S)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Myriam Jeninga (M)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Jan Schulze-Luehrmann (J)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Martha Ölke (M)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Benedikt Schmid (B)

Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Daniele Hasler (D)

Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany.

Gunter Meister (G)

Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany.

Georg Häcker (G)

Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany.

Michaela Petter (M)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Paul A Beare (PA)

Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America.

Anja Lührmann (A)

Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH