Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice.
Animals
Dopaminergic Neurons
/ physiology
Male
Mice
Mice, Inbred C57BL
Neural Pathways
/ physiology
Neurons
/ physiology
Nucleus Accumbens
/ physiology
Orientation, Spatial
/ physiology
Prefrontal Cortex
/ physiology
Social Behavior
Social Interaction
Superior Colliculi
/ pathology
Ventral Tegmental Area
/ physiology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 02 2022
10 02 2022
Historique:
received:
22
02
2021
accepted:
25
01
2022
entrez:
11
2
2022
pubmed:
12
2
2022
medline:
4
3
2022
Statut:
epublish
Résumé
Social behaviours characterize cooperative, mutualistic, aggressive or parental interactions that occur among conspecifics. Although the Ventral Tegmental Area (VTA) has been identified as a key substrate for social behaviours, the input and output pathways dedicated to specific aspects of conspecific interaction remain understudied. Here, in male mice, we investigated the activity and function of two distinct VTA inputs from superior colliculus (SC-VTA) and medial prefrontal cortex (mPFC-VTA). We observed that SC-VTA neurons display social interaction anticipatory calcium activity, which correlates with orienting responses towards an unfamiliar conspecific. In contrast, mPFC-VTA neuron population activity increases after initiation of the social contact. While protracted phasic stimulation of SC-VTA pathway promotes head/body movements and decreases social interaction, inhibition of this pathway increases social interaction. Here, we found that SC afferents mainly target a subpopulation of dorsolateral striatum (DLS)-projecting VTA dopamine (DA) neurons (VTA
Identifiants
pubmed: 35145124
doi: 10.1038/s41467-022-28512-4
pii: 10.1038/s41467-022-28512-4
pmc: PMC8831635
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
817Informations de copyright
© 2022. The Author(s).
Références
Nat Commun. 2021 Jul 20;12(1):4409
pubmed: 34285209
Neuron. 2017 Jan 4;93(1):33-47
pubmed: 27989459
Cell. 2014 Jun 19;157(7):1535-51
pubmed: 24949967
Trends Cogn Sci. 2012 Apr;16(4):231-9
pubmed: 22425667
eNeuro. 2020 Sep 29;7(5):
pubmed: 32928881
Annu Rev Neurosci. 2013 Jul 8;36:165-82
pubmed: 23682659
Brain. 2018 Sep 1;141(9):2795-2805
pubmed: 30016410
Nature. 2018 Jun;558(7711):590-594
pubmed: 29925954
Science. 2005 Mar 4;307(5714):1476-9
pubmed: 15746431
Front Neuroanat. 2012 Apr 03;6:9
pubmed: 22514521
Front Neurosci. 2019 Jan 09;12:1029
pubmed: 30686990
Neuroscience. 2010 Jan 13;165(1):1-15
pubmed: 19825395
Nat Commun. 2018 Aug 9;9(1):3173
pubmed: 30093665
Cell. 2015 Jul 30;162(3):622-34
pubmed: 26232228
Behav Brain Res. 1982 Jun;5(2):213-8
pubmed: 7201842
Neuroscience. 2011 Mar 10;176:296-307
pubmed: 21182904
Curr Biol. 2019 Oct 7;29(19):3244-3255.e4
pubmed: 31564491
J Neurosci. 2002 Dec 1;22(23):10477-86
pubmed: 12451147
Trends Neurosci. 1989 Apr;12(4):137-47
pubmed: 2470171
Neuroscience. 1986 Oct;19(2):367-80
pubmed: 3774146
Neuron. 2010 Dec 9;68(5):815-34
pubmed: 21144997
J Neurodev Disord. 2018 Jun 28;10(1):23
pubmed: 29950161
Behav Neurosci. 1988 Feb;102(1):93-100
pubmed: 3281694
Front Neuroanat. 2010 Sep 22;4:
pubmed: 20941324
Prog Brain Res. 2011;189:209-22
pubmed: 21489391
Curr Biol. 2019 Feb 18;29(4):637-644.e3
pubmed: 30713103
Neuron. 2021 Mar 17;109(6):947-956.e5
pubmed: 33535028
Neuroscience. 2014 Dec 12;282:248-57
pubmed: 25445194
PLoS One. 2017 Jun 9;12(6):e0178859
pubmed: 28599002
Neuron. 2019 Aug 7;103(3):473-488.e6
pubmed: 31202540
Front Neurosci. 2016 Dec 23;10:586
pubmed: 28066169
Neuroscience. 2006;138(1):221-34
pubmed: 16361067
Nat Commun. 2018 Sep 3;9(1):3553
pubmed: 30177726
Annu Rev Physiol. 1963;25:545-80
pubmed: 13977960
Psychophysiology. 2009 Jan;46(1):1-11
pubmed: 18778317
Neuron. 2018 Apr 4;98(1):16-30
pubmed: 29621486