Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling.
Biolabelling
Fluorophores
Metal-Chelating Fluorophores
Self-Healing Dyes
Super-Resolution Microscopy
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
02 05 2022
02 05 2022
Historique:
received:
23
09
2021
pubmed:
12
2
2022
medline:
27
4
2022
entrez:
11
2
2022
Statut:
ppublish
Résumé
Many life-science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super-resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of 'linker' compounds, that bridge biotarget, fluorophore and a functional moiety via well-established labeling protocols. Linker molecules were synthesized via the Ugi four-component reaction (Ugi-4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation- and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon-rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol-maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self-healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self-healing linker-fluorophore conjugates and demonstrated their applications in super-resolution imaging and single-molecule spectroscopy.
Identifiants
pubmed: 35146855
doi: 10.1002/anie.202112959
pmc: PMC9305292
doi:
Substances chimiques
Fluorescent Dyes
0
Ionophores
0
Rhodamines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202112959Informations de copyright
© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
Science. 1999 Mar 12;283(5408):1676-83
pubmed: 10073925
Nat Methods. 2011 Nov 13;9(1):68-71
pubmed: 22081126
Annu Rev Phys Chem. 2012;63:595-617
pubmed: 22404588
FEMS Microbiol Lett. 1997 Aug 15;153(2):311-9
pubmed: 9271857
Nat Struct Mol Biol. 2015 Jan;22(1):57-64
pubmed: 25486304
Nat Methods. 2022 Feb;19(2):149-158
pubmed: 34949811
Angew Chem Int Ed Engl. 2012 Apr 10;51(15):3532-54
pubmed: 22422626
J Am Chem Soc. 2021 Sep 1;143(34):13782-13789
pubmed: 34424689
Curr Protoc Chem Biol. 2011;3(4):153-162
pubmed: 22844652
Chem Rev. 2014 Jun 25;114(12):6130-78
pubmed: 24779710
Chem Soc Rev. 2016 May 21;45(10):2825-46
pubmed: 26898222
Phys Chem Chem Phys. 2019 Feb 13;21(7):3721-3733
pubmed: 30499568
Sci Rep. 2016 Sep 19;6:33257
pubmed: 27641327
Nat Chem. 2013 Feb;5(2):132-9
pubmed: 23344448
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24305-24315
pubmed: 32913060
Nat Chem Biol. 2011 Jul 18;7(8):480-3
pubmed: 21769088
Nucleic Acids Res. 2010 Oct;38(18):e177
pubmed: 20699272
Chemphyschem. 2010 Aug 23;11(12):2475-90
pubmed: 20632356
Nat Methods. 2012 Apr 27;9(5):428-9
pubmed: 22543373
Angew Chem Int Ed Engl. 2011 Mar 21;50(13):2940-5
pubmed: 21404374
J Fluoresc. 2004 Mar;14(2):145-50
pubmed: 15615040
Angew Chem Int Ed Engl. 2011 Aug 22;50(35):8051-6
pubmed: 21761519
Chem Soc Rev. 2014 Feb 21;43(4):1044-56
pubmed: 24177677
Nat Rev Methods Primers. 2021;1:
pubmed: 34585143
Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250
pubmed: 25599551
Nat Chem. 2014 Aug;6(8):681-9
pubmed: 25054937
Nat Chem. 2012 Mar 11;4(4):292-7
pubmed: 22437714
Bioconjug Chem. 2020 Jun 17;31(6):1587-1595
pubmed: 32379972
PLoS One. 2013;8(3):e58049
pubmed: 23483966
Curr Opin Struct Biol. 2013 Feb;23(1):36-47
pubmed: 23312353
Nat Methods. 2011 Jul 28;8(8):642-5
pubmed: 21799499
Nat Methods. 2008 Dec;5(12):1047-52
pubmed: 19029906
Nat Chem. 2013 Aug;5(8):692-7
pubmed: 23881501
Photochem Photobiol. 2012 Jul-Aug;88(4):782-91
pubmed: 22364288
Angew Chem Int Ed Engl. 2000 Jun 16;39(12):2109-2112
pubmed: 10941031
J Phys Chem Lett. 2014 Nov 6;5(21):3792-8
pubmed: 26278749
Chem Soc Rev. 2018 Jan 2;47(1):12-27
pubmed: 29099127
Angew Chem Int Ed Engl. 2010 Oct 11;49(42):7710-3
pubmed: 20821777
J Am Chem Soc. 2018 Sep 5;140(35):11006-11012
pubmed: 30085664
ACS Nano. 2020 Jul 28;14(7):7860-7867
pubmed: 32176475
Anal Biochem. 1983 Jul 1;132(1):68-73
pubmed: 6353995
Angew Chem Int Ed Engl. 2022 May 2;61(19):e202112959
pubmed: 35146855
J Phys Chem Lett. 2020 Jun 4;11(11):4462-4480
pubmed: 32401520
Faraday Discuss. 2015;184:221-35
pubmed: 26449795
J Am Chem Soc. 2008 Oct 15;130(41):13518-9
pubmed: 18798613
Angew Chem Int Ed Engl. 2007;46(18):3363-6
pubmed: 17397126
Chemphyschem. 2013 Dec 16;14(18):4084-93
pubmed: 24302532
Antimicrob Agents Chemother. 2004 May;48(5):1803-6
pubmed: 15105138
Mol Cell Proteomics. 2008 Feb;7(2):282-9
pubmed: 17951627
Phys Chem Chem Phys. 2011 Apr 14;13(14):6699-709
pubmed: 21311807
Chemistry. 2012 Oct 8;18(41):12986-98
pubmed: 22968960
ACS Nano. 2020 Jul 28;14(7):9156-9165
pubmed: 32567836
Curr Opin Struct Biol. 2018 Feb;48:30-39
pubmed: 29080467
RSC Adv. 2020 Nov 23;10(70):42644-42681
pubmed: 35514898
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6
pubmed: 17142314
Chem Sci. 2017 Jan 1;8(1):755-762
pubmed: 28377799
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7414-8
pubmed: 21502529
Science. 2006 Sep 15;313(5793):1642-5
pubmed: 16902090
Science. 2015 Jan 30;347(6221):543-8
pubmed: 25592419
Nat Methods. 2006 Oct;3(10):793-5
pubmed: 16896339
ChemistryOpen. 2018 Feb 06;7(3):256-261
pubmed: 29531889
Nano Lett. 2010 Nov 10;10(11):4756-61
pubmed: 20957983
Nat Methods. 2006 May;3(5):361-8
pubmed: 16628206
Nature. 2017 Jun 1;546(7656):162-167
pubmed: 28538724
Chemistry. 2017 Oct 12;23(57):14267-14277
pubmed: 28799205
Angew Chem Int Ed Engl. 2010 Apr 12;49(17):3065-8
pubmed: 20333639
Nano Lett. 2011 Dec 14;11(12):5482-8
pubmed: 22023515
Nat Methods. 2012 Apr 27;9(5):426-7; author reply 427-8
pubmed: 22543371
Nat Commun. 2016 Jan 11;7:10144
pubmed: 26751640
ACS Omega. 2020 Mar 23;5(13):7424-7431
pubmed: 32280884
ACS Omega. 2020 Jan 07;5(2):972-979
pubmed: 31984252
Chem Commun (Camb). 2015 Jul 11;51(54):10831-4
pubmed: 26051476
ACS Cent Sci. 2019 Sep 25;5(9):1602-1613
pubmed: 31572787