Hypermethylation of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
received:
13
07
2021
accepted:
18
11
2021
revised:
12
11
2021
pubmed:
17
2
2022
medline:
20
4
2022
entrez:
16
2
2022
Statut:
ppublish
Résumé
Despite numerous observations regarding the relationship between DNA methylation changes and cancer progression, only a few genes have been verified as diagnostic biomarkers of colorectal cancer (CRC). To more practically detect methylation changes, we performed targeted bisulfite sequencing. Through co-analysis of RNA-seq, we identified cohort-specific DNA methylation markers: CpG islands of the intragenic regions of PDX1, EN2, and MSX1. We validated that these genes have oncogenic features in CRC and that their expression levels are increased in correlation with the hypermethylation of intragenic regions. The reliable depth of the targeted bisulfite sequencing data enabled us to design highly optimized quantitative methylation-specific PCR primer sets that can successfully detect subtle changes in the methylation levels of candidate regions. Furthermore, these methylation levels can divide CRC patients into two groups denoting good and poor prognoses. In this study, we present a streamlined workflow for screening clinically significant differentially methylated regions. Our discovery of methylation markers in the PDX1, EN2, and MSX1 genes suggests their promising performance as prognostic markers and their clinical application in CRC patients.
Identifiants
pubmed: 35169223
doi: 10.1038/s12276-022-00731-1
pii: 10.1038/s12276-022-00731-1
pmc: PMC8894425
doi:
Substances chimiques
Biomarkers, Tumor
0
Homeodomain Proteins
0
MSX1 Transcription Factor
0
MSX1 protein, human
0
Nerve Tissue Proteins
0
Trans-Activators
0
engrailed 2 protein
0
pancreatic and duodenal homeobox 1 protein
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
156-168Informations de copyright
© 2022. The Author(s).
Références
Ferlay, J. et al. Global Cancer Observatory: Cancer Today. IARC https://gco.iarc.fr/today (2020).
Day, D. W. The adenoma-carcinoma sequence. Scand. J. Gastroenterol. Suppl. 104, 99–107 (1984).
pubmed: 6597553
Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer. Lancet 394, 1467–1480 (2019).
pubmed: 31631858
doi: 10.1016/S0140-6736(19)32319-0
Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).
pubmed: 15286780
doi: 10.1038/nm1087
Zecchin, D. et al. BRAF V600E is a determinant of sensitivity to proteasome inhibitors. Mol. Cancer Ther. 12, 2950–2961 (2013).
pubmed: 24107445
doi: 10.1158/1535-7163.MCT-13-0243
Schell, M. J. et al. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat. Commun. 7, 11743 (2016).
pubmed: 27302369
pmcid: 4912618
doi: 10.1038/ncomms11743
Xia, L. C. et al. Whole genome analysis identifies the association of TP53 genomic deletions with lower survival in Stage III colorectal cancer. Sci. Rep. 10, 5009 (2020).
pubmed: 32193467
pmcid: 7081316
doi: 10.1038/s41598-020-61643-6
SEER Cancer Stat Facts: Colorectal Cancer. National Cancer Institute https://seer.cancer.gov/statfacts/html/colorect.html (2020).
Dashwood, R. H. Early detection and prevention of colorectal cancer (review). Oncol. Rep. 6, 277–281 (1999).
pubmed: 10022989
Force, U. S. P. S. T. et al. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA 315, 2564–2575 (2016).
doi: 10.1001/jama.2016.5989
Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).
pubmed: 6185846
doi: 10.1038/301089a0
Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413 (2002).
pubmed: 12154403
doi: 10.1038/sj.onc.1205651
Rodriguez, J. et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 66, 8462–9468 (2006).
pubmed: 16951157
doi: 10.1158/0008-5472.CAN-06-0293
Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).
pubmed: 10411935
pmcid: 17576
doi: 10.1073/pnas.96.15.8681
Tóth, K. et al. Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS ONE 7, e46000 (2012).
pubmed: 23049919
pmcid: 3457959
doi: 10.1371/journal.pone.0046000
A stool DNA test (Cologuard) for colorectal cancer screening. Med. Lett. Drugs Ther. 56, 100–101 (2014).
Peterse, E. F. P. et al. Comparing the cost-effectiveness of innovative colorectal cancer screening tests. J. Natl Cancer I. 113, 154–161 (2021).
doi: 10.1093/jnci/djaa103
Koch, A. et al. Analysis of DNA methylation in cancer: location revisited. Nat. Rev. Clin. Oncol. 15, 459–466 (2018).
pubmed: 29666440
doi: 10.1038/s41571-018-0004-4
Tse, J. W. T., Jenkins, L. J., Chionh, F. & Mariadason, J. M. Aberrant DNA methylation in colorectal cancer: what should we target? Trends Cancer 3, 698–712 (2017).
pubmed: 28958388
doi: 10.1016/j.trecan.2017.08.003
Jain, S. et al. Impact of the location of CpG methylation within the GSTP1 gene on its specificity as a DNA marker for hepatocellular carcinoma. PLoS ONE 7, e35789 (2012).
pubmed: 22536438
pmcid: 3335004
doi: 10.1371/journal.pone.0035789
Dedeurwaerder, S. et al. Evaluation of the Infinium Methylation 450 K technology. Epigenomics 3, 771–784 (2011).
pubmed: 22126295
doi: 10.2217/epi.11.105
Wendt, J., Rosenbaum, H., Richmond, T. A., Jeddeloh, J. A. & Burgess, D. L. Targeted bisulfite sequencing using the SeqCap Epi enrichment system. Methods Mol. Biol. 1708, 383–405 (2018).
pubmed: 29224155
doi: 10.1007/978-1-4939-7481-8_20
Herman, J. G., Graff, J. R., Myöhänen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. P. Natl Acad. Sci. USA 93, 9821–9826 (1996).
doi: 10.1073/pnas.93.18.9821
Hernandez, H. G., Tse, M. Y., Pang, S. C., Arboleda, H. & Forero, D. A. Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 55, 181–197 (2013).
pubmed: 24107250
doi: 10.2144/000114087
Kibbe, W. A. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007).
pubmed: 17452344
pmcid: 1933198
doi: 10.1093/nar/gkm234
Klutstein, M., Nejman, D., Greenfield, R. & Cedar, H. DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450 (2016).
pubmed: 27256564
doi: 10.1158/0008-5472.CAN-15-3278
Lu, J., Wilfred, P., Korbie, D. & Trau, M. Regulation of canonical oncogenic signaling pathways in cancer via DNA methylation. Cancers (Basel) 12, 3199 (2020).
doi: 10.3390/cancers12113199
Ng, J. M. & Yu, J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int. J. Mol. Sci. 16, 2472–2496 (2015).
pubmed: 25622259
pmcid: 4346847
doi: 10.3390/ijms16022472
Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).
pubmed: 18463664
doi: 10.1038/nrg2341
Maunakea, A. K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).
pubmed: 20613842
pmcid: 3998662
doi: 10.1038/nature09165
Lee, S. M. et al. Intragenic CpG islands play important roles in bivalent chromatin assembly of developmental genes. Proc. Natl Acad. Sci. USA 114, E1885–e1894 (2017).
pubmed: 28223506
pmcid: 5347632
Krinner, S. et al. CpG domains downstream of TSSs promote high levels of gene expression. Nucleic Acids Res. 42, 3551–3564 (2014).
pubmed: 24413563
pmcid: 3973331
doi: 10.1093/nar/gkt1358
Shenker, N. & Flanagan, J. M. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br. J. Cancer 106, 248–253 (2012).
pubmed: 22166804
doi: 10.1038/bjc.2011.550
Kinde, B., Wu, D. Y., Greenberg, M. E. & Gabel, H. W. DNA methylation in the gene body influences MeCP2-mediated gene repression. Proc. Natl Acad. Sci. USA 113, 15114–15119 (2016).
pubmed: 27965390
pmcid: 5206576
doi: 10.1073/pnas.1618737114
Arechederra, M. et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 9, 3164 (2018).
pubmed: 30089774
pmcid: 6082886
doi: 10.1038/s41467-018-05550-5
Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Bio. 20, 590–607 (2019).
doi: 10.1038/s41580-019-0159-6
Chandrashekar, D. S. et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658 (2017).
pubmed: 28732212
pmcid: 5516091
Teo, A. K. et al. PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells. Stem Cell Rep. 4, 578–590 (2015).
doi: 10.1016/j.stemcr.2015.02.015
Lin, C.-P. & He, L. Noncoding RNAs in cancer development. Annu. Rev. Cancer Biol. 1, 163–184 (2017).
doi: 10.1146/annurev-cancerbio-050216-034443
Boons, G. et al. PDX1 DNA methylation distinguishes two subtypes of pancreatic neuroendocrine neoplasms with a different prognosis. Cancers (Basel) 12, 1461 (2020).
doi: 10.3390/cancers12061461
Vinogradova, T. V. & Sverdlov, E. D. PDX1: a unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer. Biochem. (Mosc.) 82, 887–893 (2017).
doi: 10.1134/S000629791708003X
Brunet, I. et al. The transcription factor Engrailed-2 guides retinal axons. Nature 438, 94–98 (2005).
pubmed: 16267555
pmcid: 3785142
doi: 10.1038/nature04110
Li, Y. et al. EN2 as an oncogene promotes tumor progression via regulating CCL20 in colorectal cancer. Cell Death Dis. 11, 604 (2020).
pubmed: 32732864
pmcid: 7393501
doi: 10.1038/s41419-020-02804-3
Sun, A. J. et al. Identification of MSX1 and DCLK1 as mRNA biomarkers for colorectal cancer detection through DNA methylation information. J. Cell Physiol. 232, 1879–1884 (2017).
pubmed: 27966796
doi: 10.1002/jcp.25733
Morita, S. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).
pubmed: 27571369
doi: 10.1038/nbt.3658
Su, J. et al. Homeobox oncogene activation by pan-cancer DNA hypermethylation. Genome Biol. 19, 108 (2018).
pubmed: 30097071
pmcid: 6085761
doi: 10.1186/s13059-018-1492-3
Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).
pubmed: 24645800
doi: 10.1056/NEJMoa1311194
Lu, H. et al. DNA methylation analysis of SFRP2, GATA4/5, NDRG4 and VIM for the detection of colorectal cancer in fecal DNA. Oncol. Lett. 8, 1751–1756 (2014).
pubmed: 25202404
pmcid: 4156205
doi: 10.3892/ol.2014.2413
Liu, Y. et al. Serum methylation levels of TAC1. SEPT9 and EYA4 as diagnostic markers for early colorectal cancers: a pilot study. Biomarkers 18, 399–405 (2013).
pubmed: 23862763
doi: 10.3109/1354750X.2013.798745
Pedersen, S. K. et al. Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia. BMC Cancer 15, 654 (2015).
pubmed: 26445409
pmcid: 4596413
doi: 10.1186/s12885-015-1674-2