Development and characterization of a new gill cell line from the striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878).
Cytotoxicity
Gill
PHG cell line
Pangasianodon hypophthalmus
Transfection
Journal
Fish physiology and biochemistry
ISSN: 1573-5168
Titre abrégé: Fish Physiol Biochem
Pays: Netherlands
ID NLM: 100955049
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
30
07
2021
accepted:
26
01
2022
pubmed:
17
2
2022
medline:
15
4
2022
entrez:
16
2
2022
Statut:
ppublish
Résumé
Cell lines as an in vitro model developed from different target organs of fish find their use in virus susceptibility, cytotoxicity, gene expression studies. The striped catfish, Pangasianodon hypophthalmus, is one of the main species in aquaculture, especially in Southeast Asian countries like Thailand, Indonesia, China, India, Bangladesh, and Vietnam. The present study reports the development of a new permanent cell line from the gills of P. hypophthalmus designated as PHG and its application in toxicological research. Leibovitz's L-15 cell culture medium supplemented with 15% fetal bovine serum (FBS) was used to maintain cell line PHG. The morphology of the PHG cell line was observed fibroblastic-like. PHG cells grew well at varying temperatures ranging from 24 to 30 °C with an optimum temperature of 28 °C. The PHG cell line was characterized using a sequence of mitochondrial cytochrome C oxidase subunit I, which authenticated the species of origin of the cell line. The cell line was transfected with a pEGFP-C1 plasmid, and the transfection reporter gene was successfully expressed 48 h post-transfection with 9% transfection efficiency. The toxicity assessment of two organophosphate pesticides, chlorpyrifos, and malathion using the PHG cell line revealed that the two organophosphate pesticides were cytotoxic to the cell line at varying concentrations.
Identifiants
pubmed: 35169909
doi: 10.1007/s10695-022-01053-9
pii: 10.1007/s10695-022-01053-9
doi:
Substances chimiques
Insecticides
0
Organophosphates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
367-380Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Abdul NA, Seepoo AM, Gani T, Sugumar V, Selvam S, Allahbagash B, Abdul Kuthoos AN, Palsamy RK, Kishore M P, M. Rajwade J, Azeez SS (2022) Development and characterization of five novel cell lines from snubnose pompano, Trachinotus blochii (Lacepede, 1801), and their application in gene expression and virological studies. Journal of Fish Diseases. 2022 Jan 1
Ahmed VI, Babu VS, Chandra V, Nambi KS, Thomas J, Bhonde R, Hameed AS (2009) A new fibroblastic-like cell line from heart muscle of the Indian major carp (Catla catla): development and characterization. Aquaculture 293(3–4):180–186
doi: 10.1016/j.aquaculture.2009.05.012
Almeida JL, Cole KD, Plant AL (2016) Standards for cell line authentication and beyond. PLoS biology. 14(6):e1002476
Avella M, Berhaut J, Payan P (1994) Primary culture of gill epithelial cells from the sea bassDicentrarchus Labrax. In Vitro Cellular & Developmental Biology-Animal 30(1):41–49
doi: 10.1007/BF02631417
Bairoch A (2018) The cellosaurus, a cell-line knowledge resource. Journal of Biomolecular Techniques: JBT 29(2):25
pubmed: 29805321
pmcid: 5945021
doi: 10.7171/jbt.18-2902-002
Bejar J, Borrego JJ, Alvarez MC (1997) A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata L.). Aquaculture. 150(1–2):143–53
Bieberstein U, Braunbeck T (1998) Light and scanning electron microscopic cytopathology of 3, 5-dichlorophenol in the permanent fish cell line RTG-2. Ecotoxicol Environ Saf 41(3):298–306
pubmed: 9799582
doi: 10.1006/eesa.1998.1712
Bols NC, Lee LE (1991) Technology and uses of cell cultures from the tissues and organs of bony fish. Cytotechnology 6(3):163–187
pubmed: 22359161
doi: 10.1007/BF00624756
Bols NC, Barlian A, Chirino-Trejo M, Caldwell SJ, Goegan P, Lee LE (1994) Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J Fish Dis 17(6):601–611
doi: 10.1111/j.1365-2761.1994.tb00258.x
Bols NC, Dayeh VR, Lee LE, Schirmer K (2005) Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. InBiochemistry and molecular biology of fishes 2005 Jan 1 (Vol. 6, pp. 43–84). Elsevier
Borenfreund E, Puerner JA (1985) A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Methods 9(1):7–9
doi: 10.1007/BF01666038
Chatterjee NS, Banerjee K, Utture S, Kamble N, Rao BM, Panda SK, Mathew S (2016) Assessment of polyaromatic hydrocarbons and pesticide residues in domestic and imported pangasius (Pangasianodon hypophthalmus) fish in India. J Sci Food Agric 96(7):2373–2377
pubmed: 26213146
doi: 10.1002/jsfa.7352
Chang SF, Ngoh GH, Kueh LF, Qin QW, Chen CL, Lam TJ, Sin YM (2001) Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture 192(2–4):133–145
doi: 10.1016/S0044-8486(00)00465-8
Chi SC, Hu WW, Lo BJ (1999) Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 22(3):173–182
doi: 10.1046/j.1365-2761.1999.00152.x
Cooper JK, Sykes G, King S, Cottrill K, Ivanova NV, Hanner R, Ikonomi P (2007) Species identification in cell culture: a two-pronged molecular approach. In Vitro Cellular & Developmental Biology-Animal 43(10):344–351
doi: 10.1007/s11626-007-9060-2
Dayeh VR, Schirmer K, Bols NC (2002) Applying whole-water samples directly to fish cell cultures in order to evaluate the toxicity of industrial effluent. Water Res 36(15):3727–3738
pubmed: 12369520
doi: 10.1016/S0043-1354(02)00078-7
Dorantes-Aranda JJ, Waite TD, Godrant A, Rose AL, Tovar CD, Woods GM, Hallegraeff GM (2011) Novel application of a fish gill cell line assay to assess ichthyotoxicity of harmful marine microalgae. Harmful Algae 10(4):366–373
doi: 10.1016/j.hal.2011.01.002
Dubey A, Goswami M, Yadav K, Chaudhary D (2015a) Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line. PloS one. 10(5)
Dubey A, Goswami M, Yadav K, Mishra A, Kumar A (2015b) Establishment of a novel muscle cell line from Wallago attu for in vitro study of pesticide toxicity. Gene, Cell and Tissue
Fischer M, Belanger SE, Berckmans P, Bernhard MJ, Bláha L, Coman Schmid DE, Dyer SD, Haupt T, Hermens JL, Hultman MT, Laue H. Repeatability and reproducibility of the RTgill-W1 cell line assay for predicting fish acute toxicity. Toxicological Sciences. 2019 Jun 1;169(2):353–64.Goswami M, Lakra WS, Yadav K, Jena JK. Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.). Fish physiology and biochemistry. 2012 Dec 1;38(6):1775–83.
Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319
pubmed: 17406473
doi: 10.1038/nprot.2006.339
Freshney RI (2015) Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons
Gjessing MC, Aamelfot M, Batts WN, Benestad SL, Dale OB, Thoen E, Weli SC, Winton JR (2018) Development and characterization of two cell lines from gills of Atlantic salmon. Plos one. 13(2):e0191792
Goswami M, Yadav K, Dubey A, Sharma BS, Konwar R, Kumar R, Nagpure NS, Lakra WS (2014a) In vitro cytotoxicity assessment of two heavy metal salts in a fish cell line (RF). Drug Chem Toxicol 37(1):48–54
pubmed: 23829824
doi: 10.3109/01480545.2013.806531
Goswami M, Sharma BS, Yadav K, Bahuguna SN, Lakra WS (2014b) Establishment and characterization of a piscean PCF cell line for toxicity and gene expression studies as in vitro model. Tissue Cell 46(3):206–212
pubmed: 24852132
doi: 10.1016/j.tice.2014.04.004
Goswami M, Dubey A, Yadav K, S Sharma B, S Lakra W (2015) Identification of fish cell lines using 2-D electrophoresis based protein expression signatures. Current Proteomics. 12(4):245–52
Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270(1512):313–21
Hendijani F (2017) Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell proliferation. 50(2):e12334
Hightower LE, Renfro JL (1988) Recent applications of fish cell culture to biomedical research. J Exp Zool 248(3):290–302
pubmed: 3062124
doi: 10.1002/jez.1402480307
Hollert H, Duerr M, Erdinger L, Braunbeck T (2000) Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood. Environmental Toxicology and Chemistry: an International Journal 19(3):528–534
doi: 10.1002/etc.5620190302
Huang Y, Huang L, Zhang Y, Zheng Q, Xu L, Qin Q, Huang X (2021) Development of a sea perch (Lateolabrax japonicus) fry cell line and its application to the study of fish virus-host interactions. Aquaculture. 25;533:736127
Jin Y, Liu Z, Peng T, Fu Z (2015) The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunol 43(2):405–414
pubmed: 25634256
doi: 10.1016/j.fsi.2015.01.010
Jin YL, Chen LM, Le Y, Li YL, Hong YH, Jia KT, Yi MS (2017) Establishment of a cell line with high transfection efficiency from zebrafish Danio rerio embryos and its susceptibility to fish viruses. J Fish Biol 91(4):1018–1031
pubmed: 28833122
doi: 10.1111/jfb.13387
Katial RK, Sachanandani D, Pinney C, Lieberman MM (1998) Cytokine production in cell culture by peripheral blood mononuclear cells from immunocompetent hosts. Clinical Diagnostic Laboratory Immunology 5(1):78–81
pubmed: 9455885
pmcid: 121396
doi: 10.1128/CDLI.5.1.78-81.1998
Kulkarni AR, Soppimath KS, Dave AM, Mehta MH, Aminabhavi TM (2000) Solubility study of hazardous pesticide (chlorpyrifos) by gas chromatography. J Hazard Mater 80(1–3):9–13
pubmed: 11080565
doi: 10.1016/S0304-3894(00)00276-4
Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the MTT assay. Cold spring harbor protocols 2018(6):pdb-rot095505
Kumar R, Ravi C, Das S, Dharmaratnam A, Basheer VS, Swaminathan TR (2019) Establishment and characterization of a caudal fin-derived cell line, AOF, from the Oscar. Astronotus Ocellatus Fish Physiology and Biochemistry 45(1):123–131
pubmed: 30047007
doi: 10.1007/s10695-018-0542-9
Lakra WS, Sivakumar N, Goswami M, Bhonde RR (2006 Jan) Development of two cell culture systems from Asian seabass Lates calcarifer (Bloch). Aquac Res 37(1):18–24
doi: 10.1111/j.1365-2109.2005.01387.x
Lakra WS, Singh AK (2010) Risk analysis and sustainability of Pangasianodon hypophthalmus culture in India. Aquaculture Asia 15(1):34–37
Lakra WS, Goswami M (2011a) Development and characterization of a continuous cell line PSCF from Puntius sophore. J Fish Biol 78(4):987–1001
pubmed: 21463303
doi: 10.1111/j.1095-8649.2010.02891.x
Lakra WS, Swaminathan TR, Joy KP (2011b) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem 37(1):1–20
pubmed: 20607393
doi: 10.1007/s10695-010-9411-x
Lee LE, Dayeh VR, Schirmer K, Bols NC (2009) Applications and potential uses of fish gill cell lines: examples with RTgill-W1. In Vitro Cellular & Developmental Biology-Animal 45(3–4):127–134
doi: 10.1007/s11626-008-9173-2
Lee JH, Lee ST, Nam YK, Gong SP (2019) Gene delivery into Siberian sturgeon cell lines by commercial transfection reagents. In Vitro Cellular & Developmental Biology-Animal 55(2):76–81
doi: 10.1007/s11626-018-00316-1
Li Y, Ma Y, Hao L, Ma J, Liang Z, Liu Z, Ke H, Li Y (2021) Characterization of a novel brain cell line from Jian carp (Cyprinus carpio var. Jian). Fish Physiology and Biochemistry. 47(2):439–49
Liu Y, Wei C, Liu Z, Cao Z, Sun Y, Zhou Y, Wang S, Guo W (2021) Establishment of a new fish cell line from the brain of humpback grouper (Cromileptes altivelis) and its application in toxicology and bacterial susceptibility. Fish Physiol Biochem 47(5):1645–1658
pubmed: 34448109
doi: 10.1007/s10695-021-01006-8
Majeed SA, Nambi KS, Taju G, Raj NS, Madan N, Hameed AS (2013) Establishment and characterization of permanent cell line from gill tissue of Labeo rohita (Hamilton) and its application in gene expression and toxicology. Cell Biol Toxicol 29(1):59–73
pubmed: 23224722
doi: 10.1007/s10565-012-9237-7
Majeed SA, Nambi KS, Taju G, Babu VS, Farook MA, Hameed AS (2014) Development and characterization of a new gill cell line from air breathing fish Channa striatus (Bloch 1793) and its application in toxicology: direct comparison to the acute fish toxicity. Chemosphere 1(96):89–98
doi: 10.1016/j.chemosphere.2013.07.045
Markova E, Vasilyev S, Belyaev I (2015) 53BP1 foci as a marker of tumor cell radiosensitivity. Neoplasma 62(5):770–776
pubmed: 26278144
doi: 10.4149/neo_2015_092
Meena LL, Goswami M, Chaudhari A, Nagpure NS, Gireesh-Babu P, Dubey A, Das DK (2020) Development and characterization of a new DRCF cell line from Indian wild strain zebrafish Danio rerio (Hamilton 1822). Fish Physiol Biochem 46(4):1337–1347
pubmed: 32232614
doi: 10.1007/s10695-020-00792-x
Nanda PK, Swain P, Nayak SK, Behera T, Dhama K (2014) Comparative study on enzymatic and explant method in establishing primary culture from different cultivable cells of Indian major carp Cirrhinus mrigala. Asian J Anim Vet Adv 9(5):281–291
doi: 10.3923/ajava.2014.281.291
Phan LT, Bui TM, Nguyen TT, Gooley GJ, Ingram BA, Nguyen HV, Nguyen PT, De Silva SS (2009) Current status of farming practices of striped catfish, Pangasianodon hypophthalmus in the Mekong Delta. Vietnam Aquaculture 296(3–4):227–236
doi: 10.1016/j.aquaculture.2009.08.017
Perry GM, McDonald GJ, Ferguson MM, Ganassin RC, Bols NC (2001) Characterization of rainbow trout cell lines using microsatellite DNA profiling. Cytotechnology 37(3):143–151
pubmed: 19002917
pmcid: 3449788
doi: 10.1023/A:1020516804173
Pomp J, Wike JL, Ouwerkerk IJ, Hoogstraten C, Davelaar J, Schrier PI, Leer JW, Thames HD, Brock WA (1996) Cell density dependent plating efficiency affects outcome and interpretation of colony forming assays. Radiother Oncol 40(2):121–125
pubmed: 8884965
doi: 10.1016/0167-8140(96)01767-7
Rachlin JW, Perlmutter A (1968) Fish cells in culture for study of aquatic toxicants. Water Res 2(6):409–414
doi: 10.1016/0043-1354(68)90060-2
Rainboth WJ (1996) FAO species identification field guide for fishery purpose. Fish of the Cambodian Mekong, Rome, p 265
Roberts TR, Vidthayanon C (1991) Systematic revision of the Asian catfish family Pangasiidae, with biological observations and descriptions of three new species. Proc Acad Natl Sci Phila 1:97–143
Rocha A, Ruiz S, Coll JM (2004) Improvement of transfection efficiency of epithelioma papulosum cyprini carp cells by modification of cell cycle and use of an optimal promoter. Mar Biotechnol 6(5):401–410
doi: 10.1007/s10126-003-0008-6
Romøren K, Thu BJ, Bols NC, Evensen Ø (2004) Transfection efficiency and cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte and macrophage origin. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1663(1–2):127–34
Ruiz-Palacios M, Almeida M, Martins MA, Oliveira M, Esteban MÁ, Cuesta A (2020) Establishment of a brain cell line (FuB-1) from mummichog (Fundulus heteroclitus) and its application to fish virology, immunity and nanoplastics toxicology. Science of The Total Environment 708:134821
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold spring harbor laboratory press
Sandbichler AM, Aschberger T, Pelster B (2013) A method to evaluate the efficiency of transfection reagents in an adherent zebrafish cell line. BioResearch Open Access 2(1):20–27
pubmed: 23515475
pmcid: 3569953
doi: 10.1089/biores.2012.0287
Sathiyanarayanan A, Vijay Sundar Deva G, Nirmal T, Arul Murugan M, Safna P, Kesavan S (2019) Int. J. Chem. Stud 7(4): 1367-1370
Schiøtz BL, Rosado EG, Baekkevold ES, Lukacs M, Mjaaland S, Sindre H, Grimholt U, Gjøen T (2011) Enhanced transfection of cell lines from Atlantic salmon through nucleofection and antibiotic selection. BMC Res Notes 4(1):1–7
doi: 10.1186/1756-0500-4-136
Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224(3):163–183
pubmed: 16765501
doi: 10.1016/j.tox.2006.04.042
Segner H. Fish cell lines as a tool in aquatic toxicology. Fish ecotoxicology. 1998:1–38.
Segner H (2004) Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish. Altern Lab Anim 32(4):375–382
pubmed: 15651922
doi: 10.1177/026119290403200409
Singh AK, Lakra WS (2012) Culture of Pangasianodon hypophthalmus into India: impacts and present scenario. Pak J Biol Sci 15(1):19
pubmed: 22530438
doi: 10.3923/pjbs.2012.19.26
Singh N, Soni P, Kushwaha B, Kumar MS, Srivastava JK, Srivastava S, Mishra AK, Kumar R (2021) Establishment of a testis cell line from Clarias magur: a potential resource for in-vitro applications. The Nucleus 1:1–7
Sobhana KS, George KC, Venkat Ravi G, Ittoop G, Paulraj R (2009) Development of a cell culture system from gill explants of the grouper, Epinephelus malabaricus (Bloch and Shneider). Asian Fish Sci 22(2):541–547
Soni P, Pradhan PK, Swaminathan TR, Sood N (2018) Development, characterization and application of a new epithelial cell line from caudal fin of Pangasianodon hypophthalmus (Sauvage 1878). Acta Trop 1(182):215–222
doi: 10.1016/j.actatropica.2018.03.015
Sood N, Chaudhary DK, Pradhan PK, Verma DK, Swaminathan TR, Kushwaha B, Punia P, Jena JK (2015) Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cellular & Developmental Biology-Animal 51(8):787–796
doi: 10.1007/s11626-015-9891-1
Sood N, Pradhan PK, Verma DK, Yadav MK, Dev AK, Swaminathan TR, Sood NK (2018) Candidatus Actinochlamydia pangasiae sp. nov.(Chlamydiales, Actinochlamydiaceae), a bacterium associated with epitheliocystis in Pangasianodon hypophthalmus. Journal of fish diseases 41(2):281–90
Suryakodi S, Majeed SA, Taju G, Vimal S, Sivakumar S, Ahmed AN, Shah FA, Bhat SA, Sarma D, Begum A, Hameed AS (2021) Development and characterization of novel cell lines from kidney and eye of rainbow trout, Oncorhynchus mykiss for virological studies. Aquaculture 532:736027
Taju G, Majeed SA, Nambi KS, Hameed AS (2013) Development and characterization of cell line from the gill tissue of Catla catla (Hamilton, 1822) for toxicological studies. Chemosphere 90(7):2172–2180
pubmed: 23237299
doi: 10.1016/j.chemosphere.2012.11.027
Taju G, Majeed SA, Nambi KS, Hameed AS (2017) Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress. Chemosphere 1(184):1–2
doi: 10.1016/j.chemosphere.2017.05.151
Tanneberger K, Knöbel M, Busser FJ, Sinnige TL, Hermens JL, Schirmer K (2013) Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ Sci Technol 47(2):1110–1119
pubmed: 23227966
doi: 10.1021/es303505z
Thangaraj RS, Narendrakumar L, Prasannan Geetha P, Shanmuganathan AR, Dharmaratnam A, Nithianantham SR (2021) Comprehensive update on inventory of finfish cell lines developed during the last decade (2010–2020). Reviews in Aquaculture
Thenmozhi C, Vignesh V, Thirumurugan R, Arun S (2011) Impacts of malathion on mortality and biochemical changes of freshwater fish Labeo rohita.
Tong SL, Li H, Miao HZ (1997) The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture 156(3–4):327–333
doi: 10.1016/S0044-8486(97)00070-7
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society b: Biological Sciences 360(1462):1847–1857
doi: 10.1098/rstb.2005.1716
Wolf K, Quimby MC (1962) Established eurythermic line of fish cells in vitro. Science 135(3508):1065–1066
pubmed: 14007940
doi: 10.1126/science.135.3508.1065
Xue T, Wang YZ, Pan QH, Wang Q, Yuan JF, Chen TS (2018) Establishment of a cell line from the kidney of black carp and its susceptibility to spring viremia of carp virus. J Fish Dis 41(2):365–374
pubmed: 29068065
doi: 10.1111/jfd.12736
Yan W, Nie P, Lu Y (2011) Establishment, characterization and viral susceptibility of a new cell line derived from goldfish, Carassius auratus (L.), tail fin. Journal of fish diseases. 34(10):757–68
Yoon JH, Roh EY, Shin S, Jung NH, Song EY, Chang JY, Kim BJ, Jeon HW (2013) Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. Biomed Res Int 9:2013
Zhou GZ, Gui L, Li ZQ, Yuan XP, Zhang QY (2008) Establishment of a Chinese sturgeon Acipenser sinensis tail-fin cell line and its susceptibility to frog iridovirus. J Fish Biol 73(8):2058–2067
doi: 10.1111/j.1095-8649.2008.02076.x