Hemodynamic Parameters for Cardiovascular System in 4D Flow MRI: Mathematical Definition and Clinical Applications.


Journal

Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
ISSN: 1880-2206
Titre abrégé: Magn Reson Med Sci
Pays: Japan
ID NLM: 101153368

Informations de publication

Date de publication:
01 Mar 2022
Historique:
pubmed: 18 2 2022
medline: 3 3 2022
entrez: 17 2 2022
Statut: ppublish

Résumé

Blood flow imaging becomes an emerging trend in cardiology with the recent progress in computer technology. It not only visualizes colorful flow velocity streamlines but also quantifies the mechanical stress on cardiovascular structures; thus, it can provide the detailed inspections of the pathophysiology of diseases and predict the prognosis of cardiovascular functions. Clinical applications include the comprehensive assessment of hemodynamics and cardiac functions in echocardiography vector flow mapping (VFM), 4D flow MRI, and surgical planning as a simulation medicine in computational fluid dynamics (CFD).For evaluation of the hemodynamics, novel mathematically derived parameters obtained using measured velocity distributions are essential. Among them, the traditional and typical parameters are wall shear stress (WSS) and its related parameters. These parameters indicate the mechanical damages to endothelial cells, resulting in degenerative intimal change in vascular diseases. Apart from WSS, there are abundant parameters that describe the strength of the vortical and/or helical flow patterns. For instance, vorticity, enstrophy, and circulation indicate the rotating flow strength or power of 2D vortical flows. In addition, helicity, which is defined as the cross-linking number of the vortex filaments, indicates the 3D helical flow strength and adequately describes the turbulent flow in the aortic root in cases with complicated anatomies. For the description of turbulence caused by the diseased flow, there exist two types of parameters based on completely different concepts, namely: energy loss (EL) and turbulent kinetic energy (TKE). EL is the dissipated energy with blood viscosity and evaluates the cardiac workload related to the prognosis of heart failure. TKE describes the fluctuation in kinetic energy during turbulence, which describes the severity of the diseases that cause jet flow. These parameters are based on intuitive and clear physiological concepts, and are suitable for in vivo flow measurements using inner velocity profiles.

Identifiants

pubmed: 35173116
doi: 10.2463/mrms.rev.2021-0097
pmc: PMC9680550
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

380-399

Références

Magn Reson Med. 2017 Feb;77(2):794-805
pubmed: 26924448
J Thorac Cardiovasc Surg. 2021 Dec;162(6):1791-1804
pubmed: 33653609
Eur Heart J. 2014 Mar;35(12):747-752a
pubmed: 24795943
Pediatr Cardiol. 2021 Jan;42(1):169-177
pubmed: 32978672
MAGMA. 2018 Feb;31(1):165-172
pubmed: 28921052
Cardiovasc Res. 2013 Jul 15;99(2):242-50
pubmed: 23459102
Magn Reson Med. 2016 Jul;76(1):191-6
pubmed: 26258402
J Vasc Surg. 2012 Apr;55(4):914-23
pubmed: 22386146
PLoS One. 2015 Sep 29;10(9):e0138365
pubmed: 26418553
Biophys J. 2019 Dec 17;117(12):2324-2336
pubmed: 31427066
Int J Cardiol. 2016 Oct 15;221:546-8
pubmed: 27414737
Eur Heart J. 2019 Jul 1;40(26):2170
pubmed: 30916327
Cardiovasc Pathol. 2013 Jan-Feb;22(1):9-15
pubmed: 22818581
J Clin Anesth. 2017 Nov;42:40-41
pubmed: 28800477
Circulation. 1993 Nov;88(5 Pt 1):2235-47
pubmed: 8222118
J Biomech Eng. 2002 Aug;124(4):364-77
pubmed: 12188203
J Magn Reson Imaging. 2015 Apr;41(4):1021-9
pubmed: 24711057
Magn Reson Med. 2014 Sep;72(3):620-8
pubmed: 24122967
J Biomech. 1996 Jan;29(1):111-21
pubmed: 8839024
Magn Reson Med. 2006 Oct;56(4):850-8
pubmed: 16958074
Ann Thorac Surg. 2009 Aug;88(2):565-72; discussion 572-3
pubmed: 19632413
Radiographics. 2020 Nov-Dec;40(7):2142-2144
pubmed: 33136486
Int J Artif Organs. 2003 Nov;26(11):1005-14
pubmed: 14708830
J Thorac Cardiovasc Surg. 2012 Jul;144(1):130-8
pubmed: 21907359
J Am Coll Cardiol. 2019 Apr 2;73(12):1494-1563
pubmed: 30121240
J Biomech. 2013 Jul 26;46(11):1851-8
pubmed: 23746596
Med Eng Phys. 2013 Jun;35(6):800-9
pubmed: 22981221
BMC Cardiovasc Disord. 2017 Jan 9;17(1):21
pubmed: 28068909
PLoS One. 2016 Mar 15;11(3):e0151540
pubmed: 26978529
J Thorac Cardiovasc Surg. 1996 Mar;111(3):502-13
pubmed: 8601964
J Thorac Cardiovasc Surg. 2006 Apr;131(4):785-91
pubmed: 16580435
Ann Biomed Eng. 2007 Feb;35(2):250-63
pubmed: 17171509
Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2191-8
pubmed: 24876354
Circulation. 2000 Feb 22;101(7):765-71
pubmed: 10683350
J Thorac Cardiovasc Surg. 2017 Sep;154(3):e51-e54
pubmed: 28655449
J Med Case Rep. 2019 Feb 5;13(1):30
pubmed: 30722790
Magn Reson Med. 2014 Apr;71(4):1542-53
pubmed: 23716466
J Am Heart Assoc. 2017 Dec 20;6(12):
pubmed: 29263034
Circ Cardiovasc Imaging. 2017 Jun;10(6):
pubmed: 28611119
Magn Reson Med. 2014 Apr;71(4):1405-15
pubmed: 23670993
Interact Cardiovasc Thorac Surg. 2018 Mar 1;26(3):460-467
pubmed: 29049796
Interact Cardiovasc Thorac Surg. 2018 Feb 1;26(2):293-300
pubmed: 29049701
Radiology. 2019 Dec;293(3):541-550
pubmed: 31592729
Circulation. 2006 Jun 13;113(23):2679-82
pubmed: 16769924
J Magn Reson Imaging. 2019 Jan;49(1):90-100
pubmed: 30102443
Circulation. 1995 Nov 1;92(9 Suppl):II322-6
pubmed: 7586432
Circulation. 2008 Feb 26;117(8):993-1002
pubmed: 18250270
JACC Cardiovasc Imaging. 2013 Jan;6(1):64-71
pubmed: 23328563
Theor Biol Med Model. 2017 Mar 20;14(1):5
pubmed: 28320412
Physiol Meas. 2020 Apr 16;41(3):035007
pubmed: 32143201
J Thorac Cardiovasc Surg. 2003 Oct;126(4):1040-7
pubmed: 14566244
J Cardiothorac Vasc Anesth. 2017 Dec;31(6):2118-2122
pubmed: 28666934
Circulation. 2005 Nov 22;112(21):3264-71
pubmed: 16286590
J Magn Reson Imaging. 2017 Nov;46(5):1389-1399
pubmed: 28295788
Int J Cardiovasc Imaging. 2018 Jun;34(6):905-920
pubmed: 29305740
Circulation. 2013 Mar 12;127(10):1149-56
pubmed: 23357717
Interact Cardiovasc Thorac Surg. 2021 Aug 18;33(3):339-347
pubmed: 33963389
J Magn Reson Imaging. 2018 Apr;47(4):1043-1053
pubmed: 28766919
J Med Case Rep. 2020 Jul 23;14(1):113
pubmed: 32698864
J Cardiol. 2015 Nov;66(5):403-10
pubmed: 25595559
Magn Reson Imaging Clin N Am. 2015 Feb;23(1):15-23
pubmed: 25476670
J Am Coll Cardiol. 2008 Feb 12;51(6):645-50
pubmed: 18261684
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1687-H1698
pubmed: 33635164
Cardiovasc Res. 2013 Jul 15;99(2):315-27
pubmed: 23619421
Radiol Med. 2020 Sep;125(9):838-850
pubmed: 32671554
Eur Heart J. 2015 Mar 14;36(11):637
pubmed: 25265972
J Magn Reson Imaging. 2008 Sep;28(3):655-63
pubmed: 18777557
Pediatr Cardiol. 2018 Apr;39(4):731-742
pubmed: 29453683
Gen Thorac Cardiovasc Surg. 2017 Nov;65(11):611-621
pubmed: 28929446
J Cardiovasc Magn Reson. 2015 Aug 10;17:72
pubmed: 26257141
Invest Radiol. 2011 May;46(5):317-25
pubmed: 21285892
Eur Heart J Cardiovasc Imaging. 2015 Jul;16(7):723-30
pubmed: 25762562
J Thorac Cardiovasc Surg. 2011 Jul;142(1):127-35
pubmed: 21277599
Eur Heart J. 2014 Feb;35(5):306
pubmed: 24135837
Eur J Cardiothorac Surg. 2020 Mar 1;57(3):588-595
pubmed: 31535124
Phys Rev E. 2019 Nov;100(5-1):053101
pubmed: 31870017
Am J Physiol Heart Circ Physiol. 2019 Dec 1;317(6):H1312-H1327
pubmed: 31603355
Circulation. 2007 Sep 11;116(11 Suppl):I165-71
pubmed: 17846299
Am J Cardiol. 2005 Mar 15;95(6):779-82
pubmed: 15757612
J Surg Res. 2004 Feb;116(2):305-13
pubmed: 15013370
J Biol Chem. 2003 Nov 21;278(47):47291-8
pubmed: 12958309
Semin Thorac Cardiovasc Surg. 2020 Spring;32(1):25-34
pubmed: 31323320
Heart Vessels. 2017 Aug;32(8):1032-1044
pubmed: 28444501
Eur Heart J. 2020 Apr 7;41(14):1454
pubmed: 31504420
J Cardiol. 2021 Jul;78(1):79-87
pubmed: 33536147
Magn Reson Med. 2017 Aug;78(2):689-701
pubmed: 27539068
Magn Reson Imaging. 2009 Sep;27(7):913-22
pubmed: 19525079
Interact Cardiovasc Thorac Surg. 2019 Mar 15;:
pubmed: 30879071
Magn Reson Med. 2018 Jan;79(1):541-553
pubmed: 28370386
Int J Cardiol. 2017 Oct 1;244:143-150
pubmed: 28629623
J Biomech Eng. 2019 Dec 1;141(12):
pubmed: 31596919

Auteurs

Keiichi Itatani (K)

Department of Cardiovascular Surgery, Osaka City University.
Cardio Flow Design Inc.

Tetsuro Sekine (T)

Department of Radiology, Nippon Medical School Musashi Kosugi Hospital.

Masaaki Yamagishi (M)

Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine.

Yoshinobu Maeda (Y)

Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine.

Norika Higashitani (N)

Cardio Flow Design Inc.
Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine.

Shohei Miyazaki (S)

Cardio Flow Design Inc.

Junya Matsuda (J)

Department of Cardiovascular Medicine, Nippon Medical School.

Yasuo Takehara (Y)

Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya university Graduate School of Medicine.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Defining multilevel developmental cervical spinal stenosis using MRI.

Prudence W H Cheung, Justin H M Leung, Vivien W Y Lee et al.
1.00
Humans Male Female Magnetic Resonance Imaging Middle Aged

Classifications MeSH