Arylalkalamine N-acetyltransferase-1 acts on a secondary amine in the yellow fever mosquito, Aedes aegypti.


Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
04 2022
Historique:
revised: 06 02 2022
received: 27 12 2021
accepted: 09 02 2022
pubmed: 19 2 2022
medline: 28 4 2022
entrez: 18 2 2022
Statut: ppublish

Résumé

Arylalkylamine N-acetyltransferase (aaNAT) in Aedes aegypti is primarily involved in cuticle pigmentation and formation. The reported arylalkylamine substrates are all primary amines. In this study, we report a novel substrate, a secondary amine, of Ae. aegypti aaNAT1. The recombinant aaNAT1 protein exhibited high activity to a secondary amine, epinephrine, which has not been reported for any aaNATs previously. Structure-activity relationship study demonstrated that aaNAT1 has an epinephrine-binding site, and molecular docking and dynamic simulation showed that epinephrine is quite stable in the active cavity. Further functional studies demonstrated that epinephrine affected mosquito fecundity, egg hatching and development. The new biochemical function of aaNAT1 in metabolizing epinephrine could reduce some negative effects of the compound in the mosquito.

Identifiants

pubmed: 35178730
doi: 10.1002/1873-3468.14316
doi:

Substances chimiques

Amines 0
Isoenzymes 0
Recombinant Proteins 0
Acetyltransferases EC 2.3.1.-
Arylamine N-Acetyltransferase EC 2.3.1.5
N-acetyltransferase 1 EC 2.3.1.5
Epinephrine YKH834O4BH

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1081-1091

Informations de copyright

© 2022 Federation of European Biochemical Societies.

Références

Hiragaki S, Suzuki T, Mohamed AA, Takeda M. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Front Physiol. 2015;6:113.
Dyda F, Klein DC, Hickman AB. GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct. 2000;29:81-103.
Klein DC. Arylalkylamine N-acetyltransferase: "the Timezyme". J Biol Chem. 2007;282:4233-7.
Chong NW, Bernard M, Klein DC. Characterization of the chicken serotonin N-acetyltransferase gene. Activation via clock gene heterodimer/E box interaction. J Biol Chem. 2000;275:32991-8.
Velarde E, Cerda-Reverter JM, Alonso-Gomez AL, Sanchez E, Isorna E, Delgado MJ. Melatonin-synthesizing enzymes in pineal, retina, liver, and gut of the goldfish (Carassius): mRNA expression pattern and regulation of daily rhythms by lighting conditions. Chronobiol Int. 2010;27:1178-201.
Zhan S, Guo Q, Li M, Li J, Miao X, Huang Y. Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development. 2010;137:4083-90.
Noh MY, Koo B, Kramer KJ, Muthukrishnan S, Arakane Y. Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol. 2016;79:119-29.
Spana EP, Abrams AB, Ellis KT, Klein JC, Ruderman BT, Shi AH, et al. speck, first identified in Drosophila melanogaster in 1910, is encoded by the arylalkalamine N-acetyltransferase (AANAT1) gene. G3: Genes - Genomes - Genetics. 2020;10:3387-98.
Zhang L, Li MZ, Chen ZH, Tang Y, Liao CH, Han Q. Arylalkalamine N-acetyltransferase-1 functions on cuticle pigmentation in the yellow fever mosquito, Aedes aegypti. Insect Sci. 2021;28:1591-600.
Neckameyer WS, White K. Drosophila tyrosine hydroxylase is encoded by the pale locus. J Neurogenet. 1993;8:189-99.
Hirsh J, Davidson N. Isolation and characterization of the dopa decarboxylase gene of Drosophila melanogaster. Mol Cell Biol. 1981;1:475-85.
Han Q, Ding H, Robinson H, Christensen BM, Li J. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase. PLoS One. 2010;5:e8826.
True JR, Yeh S-D, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, et al. Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet. 2005;1:e63.
Asano T, Takebuchi K. Identification of the gene encoding pro-phenoloxidase A(3) in the fruitfly, Drosophila melanogaster. Insect Mol Biol. 2009;18:223-32.
Fang J, Han Q, Johnson JK, Christensen BM, Li J. Functional expression and characterization of Aedes aegypti dopachrome conversion enzyme. Biochem Biophys Res Commun. 2002;290:287-93.
Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J. 2002;368:333-40.
Riedel F, Vorkel D, Eaton S. Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. Development. 2011;138:149-58.
Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT. Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila. J Biol Chem. 2003;278:41160-6.
Liao C, Upadhyay A, Liang J, Han Q, Li J. 3,4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects. Dev Comp Immunol. 2018;83:44-50.
Mehere P, Han Q, Christensen BM, Li J. Identification and characterization of two arylalkylamine N-acetyltransferases in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2011;41:707-14.
Han Q, Robinson H, Ding H, Christensen BM, Li J. Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:11669-74.
Barbera M, Mengual B, Collantes-Alegre JM, Cortes T, Gonzalez A, Martinez-Torres D. Identification, characterization and analysis of expression of genes encoding arylalkylamine N-acetyltransferases in the pea aphid Acyrthosiphon pisum. Insect Mol Biol. 2013;22:623-34.
Dempsey DR, Jeffries KA, Bond JD, Carpenter AM, Rodriguez-Ospina S, Breydo L, et al. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry. 2014;53:7777-93.
Guan H, Wang M, Liao C, Liang J, Mehere P, Tian M, et al. Identification of aaNAT5b as a spermine N-acetyltransferase in the mosquito, Aedes aegypti. PLoS One. 2018;13:e0194499.
Kawamura A, Graham J, Mushtaq A, Tsiftsoglou SA, Vath GM, Hanna PE, et al. Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening. Biochem Pharmacol. 2005;69:347-59.
Cheng KC, Liao JN, Lyu PC. Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. Biochem J. 2012;446:395-404.
Wu CY, Hu I-C, Yang Y-C, Ding W-C, Lai C-H, Lee Y-Z, et al. An essential role of acetyl coenzyme A in the catalytic cycle of insect arylalkylamine N-acetyltransferase. Commun Biol. 2020;3:441.
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701-18.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-61.
Sousa da Silva AW, Vranken WF. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012;5:367.
Dhar R, Kumar N. Role of mosquito salivary glands. Curr Sci. 2003;85:1308-13.
Andersen JF, Francischetti IM, Valenzuela JG, Schuck P, Ribeiro JM. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J Biol Chem. 2003;278:4611-7.
Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem. 2005;280:14948-55.
Zheng L-S, Liu X-Q, Liu G-G, Huang Q-Q, Wang J-J, Jiang H-B. Knockdown of a β-Adrenergic-Like Octopamine Receptor Affects Locomotion and Reproduction of Tribolium castaneum. Int J Mol Sci. 2021;22:7252.
Lange AB. Tyramine: from octopamine precursor to neuroactive chemical in insects. Gen Comp Endocrinol. 2009;162:18-26.
Tsugehara T, Iwai S, Fujiwara Y, Mita K, Takeda M. Cloning and characterization of insect arylalkylamine N-acetyltransferase from Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol. 2007;147:358-66.
Ichihara N, Okada M, Takeda M. Characterization and purification of polymorphic arylalkylamine N-acetyltransferase from the American cockroach, Periplaneta americana. Insect Biochem Mol Biol. 2001;32:15-22.
Brodbeck D, Amherd R, Callaerts P, Hintermann E, Meyer UA, Affolter M. Molecular and biochemical characterization of the aaNAT1 (Dat) locus in Drosophila melanogaster: differential expression of two gene products. DNA Cell Biol. 1998;17:621-33.
Hintermann E, Grieder NC, Amherd R, Brodbeck D, Meyer UA. Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system and the gut. Proc Natl Acad Sci USA. 1996;93:12315-20.
Battistini MR, O'Flynn BG, Shoji C, Suarez G, Galloway LC, Merkler DJ. Bm-iAANAT3: expression and characterization of a novel arylalkylamine N-acyltransferase from Bombyx mori. Arch Biochem Biophys. 2019;661:107-16.
Hintermann E, Jeno P, Meyer UA. Isolation and characterization of an arylalkylamine N-acetyltransferase from Drosophila melanogaster. FEBS Lett. 1995;375:148-50.
Amherd R, Hintermann E, Walz D, Affolter M, Meyer UA. Purification, cloning, and characterization of a second arylalkylamine N-acetyltransferase from Drosophila melanogaster. DNA Cell Biol. 2000;19:697-705.
Ichihara N, Okada M, Nakagawa H, Takeda M. Purification and characterization of arylalkylamine N-acetyltransferase from cockroach testicular organs. Insect Biochem Mol Biol. 1997;27:241-6.
Chagas AC, Ramirez JL, Jasinskiene N, James AA, Ribeiro JM, Marinotti O, et al. Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the dengue vector mosquito, Aedes aegypti. Proc Natl Acad Sci USA. 2014;111:6946-51.
Sun D, Mcnicol A, James AA, Peng Z. Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor. Platelets. 2006;17:178-84.
Martin-Martin I, Paige A, Valenzuela Leon PC, Gittis AG, Kern O, et al. ADP binding by the Culex quinquefasciatus mosquito D7 salivary protein enhances blood feeding on mammals. Nat Commun. 2020;11:1-15.
Chowanski S, Spochacz M, Szymczak M, Rosinski G. Effect of biogenic amines on the contractile activity of visceral muscles in the beetle Tenebrio molitor. Bull Insectol. 2017;70:209-20.
Lim J, Sabandal PR, Fernandez A, Sabandal JM, Lee H-G, Evans P, et al. The octopamine receptor Octβ2R regulates ovulation in Drosophila melanogaster. PLoS One. 2014;9:e104441.
de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 2018;24:1405-16.
Miller TH, Bury NR, Owen SF, MacRae JI, Barron LP. A review of the pharmaceutical exposome in aquatic fauna. Environ Pollut. 2018;239:129-46.
Kaczala F, Blum SE. The occurrence of veterinary pharmaceuticals in the environment: a review. Curr Anal Chem. 2016;12:169-82.
Rudders SA, Banerji A, Katzman DP, Clark S, Camargo CA Jr. Multiple epinephrine doses for stinging insect hypersensitivity reactions treated in the emergency department. Ann Allergy Asthma Immunol. 2010;105:85-93.
Model JFA, Dos Santos JT, Da Silva RSM, Vinagre AS. Metabolic effects of epinephrine on the crab Neohelice granulata. Comp Biochem Physiol A: Mol Integr Physiol. 2019;231:111-8.
Shore RF, Taggart MA, Smits J, Mateo R, Richards NL, Fryday S. Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates. Philos Trans R Soc B Biol Sci. 2014;369:20130570.
Abdelfattah EA, Renault D. Effect of different doses of the catecholamine epinephrine on antioxidant responses of larvae of the flesh fly Sarcophaga dux. Environ Sci Pollut Res. 2022;29:10408-15.
Tsugehara T, Imai T, Takeda M. Characterization of arylalkylamine N-acetyltransferase from silkmoth (Antheraea pernyi) and pesticidal drug design based on the baculovirus-expressed enzyme. Comp Biochem Physiol C Toxicol Pharmacol. 2013;157:93-102.

Auteurs

Lei Zhang (L)

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China.
One Health Institute, Hainan University, Haikou, China.

Yu Tang (Y)

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China.
One Health Institute, Hainan University, Haikou, China.

Huaqing Chen (H)

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China.
One Health Institute, Hainan University, Haikou, China.

Xiaojing Zhu (X)

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China.
One Health Institute, Hainan University, Haikou, China.

Xue Gong (X)

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China.
One Health Institute, Hainan University, Haikou, China.

Shouchuang Wang (S)

Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China.

Jie Luo (J)

Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China.

Qian Han (Q)

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China.
One Health Institute, Hainan University, Haikou, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH