Assessment of placental abruption with diffusion-weighted imaging.
ADC
MRI
expectant management
placental abruption
placental dysfunction
Journal
The journal of obstetrics and gynaecology research
ISSN: 1447-0756
Titre abrégé: J Obstet Gynaecol Res
Pays: Australia
ID NLM: 9612761
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
revised:
28
12
2021
received:
21
09
2021
accepted:
26
01
2022
pubmed:
24
2
2022
medline:
6
4
2022
entrez:
23
2
2022
Statut:
ppublish
Résumé
To investigate whether placental abruption without fetal distress could be assessed by apparent diffusion coefficient (ADC) values in magnetic resonance imaging (MRI). We conducted a retrospective case-control study at a single center. ADC values at the lesions of placental abruption in the abruption group (n = 8) were compared to those in the control group (n = 32). In the abruption group, ADC values at the sites of abruption were also compared to those at the nonabruption sites within the same placenta. The ADC values in the placental area above the abruption site in the abruption group showed lower values than those in the control group when the slice containing the umbilical cord insertion site was set as the reference, and those values were compared in each corresponding slice. Compared with average ADC values, those above the abruption site in the abruption group were also significantly lower than those in the control group (p < 0.001). Furthermore, ADC values at the area above abruption were lower than those at the nonabruption area of all planes in the abruption group. ADC values at the lesions above the placental abruption site were reduced compared to those in the normal placenta and those in the nonabruption area. Thus, it would be helpful to understand the pathophysiology of placental abruption in expectant management, although further investigations would be needed.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
930-937Informations de copyright
© 2022 Japan Society of Obstetrics and Gynecology.
Références
Tikkanen M. Placental abruption: epidemiology, risk factors and consequences. Acta Obstet Gynecol Scand. 2011;90(2):140-9.
Schmidt P, Skelly CL, Raines DA. Placental Abruption (Abruptio Placentae). StatPearls. Treasure Island, FL: StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC; 2020.
Bond AL, Edersheim TG, Curry L, Druzin ML, Hutson JM. Expectant management of abruptio placentae before 35 weeks gestation. Am J Perinatol. 1989;6(2):121-3.
Combs CA, Nyberg DA, Mack LA, Smith JR, Benedetti TJ. Expectant management after sonographic diagnosis of placental abruption. Am J Perinatol. 1992;9(3):170-4.
Oyelese Y, Ananth CV. Placental abruption. Obstet Gynecol. 2006;108(4):1005-16.
Drake-Pérez M, Boto J, Fitsiori A, Lovblad K, Vargas MI. Clinical applications of diffusion weighted imaging in neuroradiology. Insights Imaging. 2018;9(4):535-47.
Sørensen A, Sinding M. Placental magnetic resonance imaging: a method to evaluate placental function in vivo. Obstet Gynecol Clin N Am. 2020;47(1):197-213.
Stout JN, Rouhani S, Turk EA, Ha CG, Luo J, Rich K, et al. Placental MRI: development of an MRI compatible ex vivo system for whole placenta dual perfusion. Placenta. 2020;101:4-12.
Steinweg JK, Hui GTY, Pietsch M, Ho A, van Poppel MPM, Lloyd D, et al. T2* placental MRI in pregnancies complicated with fetal congenital heart disease. Placenta. 2021;108:23-31.
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, et al. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand. 2021;100(5):934-40.
Flouri D, Owen D, Aughwane R, Mufti N, Maksym K, Sokolska M, et al. Improved fetal blood oxygenation and placental estimated measurements of diffusion-weighted MRI using data-driven Bayesian modeling. Magn Reson Med. 2020;83(6):2160-72.
Slator PJ, Hutter J, McCabe L, Gomes ADS, Price AN, Panagiotaki E, et al. Placenta microstructure and microcirculation imaging with diffusion MRI. Magn Reson Med. 2018;80(2):756-66.
Bonel HM, Stolz B, Diedrichsen L, Frei K, Saar B, Tutschek B, et al. Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. Radiology. 2010;257(3):810-9.
Gorkem SB, Coskun A, Eslik M, Kutuk MS, Ozturk A. Diffusion-weighted imaging of placenta in intrauterine growth restriction with worsening Doppler US findings. Diagn Interv Radiol. 2019;25(4):280-4.
Siauve N, Hayot PH, Deloison B, Chalouhi GE, Alison M, Balvay D, et al. Assessment of human placental perfusion by intravoxel incoherent motion MR imaging. J Matern Fetal Neonatal Med. 2019;32(2):293-300.
Ho AEP, Hutter J, Jackson LH, Story L, McCabe L, Hajnal JV, et al. T2* placental magnetic resonance imaging in preterm preeclampsia: an observational cohort study. Hypertension. 2020;75:1523-31.
Ho A, Hutter J, Slator P, Jackson L, Seed PT, Mccabe L, et al. Placental magnetic resonance imaging in chronic hypertension: a case-control study. Placenta. 2021;104:138-45.
Masselli G, Brunelli R, Parasassi T, Perrone G, Gualdi G. Magnetic resonance imaging of clinically stable late pregnancy bleeding: beyond ultrasound. Eur Radiol. 2011;21(9):1841-9.
Kapoor H, Hanaoka M, Dawkins A, Khurana A. Review of MRI imaging for placenta accreta spectrum: pathophysiologic insights, imaging signs, and recent developments. Placenta. 2021;104:31-9.
Mukuda N, Fujii S, Inoue C, Fukunaga T, Tanabe Y, Itamochi H, et al. Apparent diffusion coefficient (ADC) measurement in ovarian tumor: effect of region-of-interest methods on ADC values and diagnostic ability. J Magn Reson Imaging. 2016;43(3):720-5.
Capuani S, Guerreri M, Antonelli A, Bernardo S, Porpora MG, Giancotti A, et al. Diffusion and perfusion quantified by magnetic resonance imaging are markers of human placenta development in normal pregnancy. Placenta. 2017;58:33-9.
Finsterer J, Aliyev R. Metabolic stroke or stroke-like lesion: peculiarities of a phenomenon. J Neurol Sci. 2020;412:116726.
Maffazzioli L, Zilio MB, Klamt AL, Duarte JA, Mazzini GS, Campos VJ, et al. ADC as a predictor of pathologic response to neoadjuvant therapy in esophageal cancer: a systematic review and meta-analysis. Eur Radiol. 2020;30:3934-42.
van Nimwegen LWE, Mavinkurve-Groothuis AMC, de Krijger RR, Hulsker CCC, Goverde AJ, Zsiros J, et al. MR imaging in discriminating between benign and malignant paediatric ovarian masses: a systematic review. Eur Radiol. 2020;30(2):1166-81.
Abdel Razek AAK, Thabet M, Salam EA. Apparent diffusion coefficient of the placenta and fetal organs in intrauterine growth restriction. J Comput Assist Tomogr. 2019;43(3):507-12.
Fu L, Zhang J, Xiong S, Sun M. Decreased apparent diffusion coefficient in the placentas of monochorionic twins with selective intrauterine growth restriction. Placenta. 2018;69:26-31.
Song F, Wu W, Qian Z, Zhang G, Cheng Y. Assessment of the placenta in intrauterine growth restriction by diffusion-weighted imaging and proton magnetic resonance spectroscopy. Reprod Sci. 2017;24(4):575-81.
Ananth CV, Smulian JC, Vintzileos AM. Incidence of placental abruption in relation to cigarette smoking and hypertensive disorders during pregnancy: a meta-analysis of observational studies. Obstet Gynecol. 1999;93(4):622-8.
Naruse K, Shigemi D, Hashiguchi M, Imamura M, Yasunaga H, Arai T. Placental abruption in each hypertensive disorders of pregnancy phenotype: a retrospective cohort study using a national inpatient database in Japan. Hypertens Res. 2021;44(2):232-8.