Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection.
Adult
Aged
Aged, 80 and over
Ambulatory Care
COVID-19
/ immunology
Cytokines
/ blood
Female
Gene Expression Regulation
Gene Regulatory Networks
Humans
Interferons
/ immunology
Killer Cells, Natural
/ immunology
Longitudinal Studies
Male
Middle Aged
Monocytes
/ immunology
Nasopharynx
/ immunology
SARS-CoV-2
/ physiology
T-Lymphocytes
/ immunology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 02 2022
23 02 2022
Historique:
received:
21
10
2021
accepted:
28
01
2022
entrez:
24
2
2022
pubmed:
25
2
2022
medline:
5
3
2022
Statut:
epublish
Résumé
The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.
Identifiants
pubmed: 35197461
doi: 10.1038/s41467-022-28508-0
pii: 10.1038/s41467-022-28508-0
pmc: PMC8866527
doi:
Substances chimiques
Cytokines
0
Interferons
9008-11-1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1018Informations de copyright
© 2022. The Author(s).
Références
Zhu, N., et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 382, 727–733 (2020).
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
pubmed: 32015507
pmcid: 7095418
doi: 10.1038/s41586-020-2012-7
Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).
Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest 130, 2620–2629 (2020).
pubmed: 32217835
pmcid: 7190990
doi: 10.1172/JCI137244
Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 26, 1623–1635 (2020).
pubmed: 32807934
doi: 10.1038/s41591-020-1038-6
Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020).
pubmed: 32669297
pmcid: 7402624
doi: 10.1126/science.abc8511
Torres Acosta, M. A. & Singer, B. D. Pathogenesis of COVID-19-induced ARDS: implications for an ageing population. Eur. Respir. J. 56, 2002049 (2020).
Vabret, N. et al. Immunology of COVID-19: current state of the science. Immunity 52, 910–941 (2020).
pubmed: 32505227
pmcid: 7200337
doi: 10.1016/j.immuni.2020.05.002
Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033 (2020).
pubmed: 32192578
pmcid: 7270045
doi: 10.1016/S0140-6736(20)30628-0
Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 26, 1636–1643 (2020).
pubmed: 32839624
pmcid: 7869028
doi: 10.1038/s41591-020-1051-9
Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210 (2020).
pubmed: 32788292
pmcid: 7665312
doi: 10.1126/science.abc6261
Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).
pubmed: 32661059
pmcid: 7402632
doi: 10.1126/science.abc6027
Acharya, D., Liu, G. & Gack, M. U. Dysregulation of type I interferon responses in COVID-19. Nat. Rev. Immunol. 20, 397–398 (2020).
Nicol, M. Q. et al. Lack of IFNgamma signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology 526, 155–164 (2019).
pubmed: 30390564
doi: 10.1016/j.virol.2018.10.017
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).
pubmed: 32972996
pmcid: 7857397
doi: 10.1126/science.abd4585
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).
pubmed: 32972995
pmcid: 7857407
doi: 10.1126/science.abd4570
Nicolai, L. et al. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J. Thromb. Haemost. 19, 574–581 (2021).
Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).
Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).
Gao, Z. et al. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect. 54, 12–16 (2020).
Garg, S. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 States, March 1–30, 2020. MMWR. Morb. Mortal. Weekly Rep. 69, 458–464 (2020).
Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020).
pubmed: 32591762
doi: 10.1038/s41587-020-0602-4
Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020).
pubmed: 32091533
doi: 10.1001/jama.2020.2648
Guan, W. J. et al. Clinical characteristics of Coronavirus Disease 2019 in China. New Engl. J. Med. 382, 1708–1720 (2020).
pubmed: 32109013
doi: 10.1056/NEJMoa2002032
Shu, T. et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19. Immunity 53, 1108–1122 (2020).
pubmed: 33128875
pmcid: 7574896
doi: 10.1016/j.immuni.2020.10.008
Kazer, S. W. et al. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat. Med. 26, 511–518 (2020).
pubmed: 32251406
pmcid: 7237067
doi: 10.1038/s41591-020-0799-2
Tran, T. N. & Bader, G. D. Tempora: cell trajectory inference using time-series single-cell RNA sequencing data. PLoS Comput. Biol. 16, e1008205 (2020).
pubmed: 32903255
pmcid: 7505465
doi: 10.1371/journal.pcbi.1008205
Busse, D. C. et al. Interferon-induced protein 44 and interferon-induced protein 44-like restrict replication of respiratory syncytial virus. J. Virol. 94, e00297–00220 (2020).
pubmed: 32611756
pmcid: 7459546
doi: 10.1128/JVI.00297-20
Yang, G., Xu, Y., Chen, X. & Hu, G. IFITM1 plays an essential role in the antiproliferative action of interferon-γ. Oncogene 26, 594–603 (2007).
pubmed: 16847454
doi: 10.1038/sj.onc.1209807
Verhelst, J., Parthoens, E., Schepens, B., Fiers, W. & Saelens, X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 86, 13445–13455 (2012).
pubmed: 23015724
pmcid: 3503048
doi: 10.1128/JVI.01682-12
Sun, Y. et al. Regulation of XAF1 expression in human colon cancer cell by interferon beta: activation by the transcription regulator STAT1. Cancer Lett. 260, 62–71 (2008).
pubmed: 18035482
doi: 10.1016/j.canlet.2007.10.014
Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).
pubmed: 21478870
pmcid: 3409588
doi: 10.1038/nature09907
Perng, Y. C. & Lenschow, D. J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16, 423–439 (2018).
pubmed: 29769653
pmcid: 7097117
doi: 10.1038/s41579-018-0020-5
Park, A. & Iwasaki, A. Type I and type III interferons–induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020).
Bizzotto, J. et al. SARS-CoV-2 infection boosts MX1 antiviral effector in COVID-19 patients. iScience 23, 101585 (2020).
pubmed: 32989429
pmcid: 7510433
doi: 10.1016/j.isci.2020.101585
Busse, D. C. et al. Interferon-induced protein 44 and interferon-induced protein 44-like restrict replication of respiratory syncytial virus. J. Virol. 94, e00297-20 (2020).
Shi, G. et al. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J. 40, e106501 (2021).
pubmed: 33270927
doi: 10.15252/embj.2020106501
Pfaender, S. et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nat. Microbiol. 5, 1330–1339 (2020).
pubmed: 32704094
pmcid: 7916999
doi: 10.1038/s41564-020-0769-y
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045.e1039 (2020).
pubmed: 32416070
pmcid: 7227586
doi: 10.1016/j.cell.2020.04.026
Konno, Y. et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity Is increased by a naturally occurring elongation variant. Cell Rep. 32, 108185 (2020).
pubmed: 32941788
pmcid: 7473339
doi: 10.1016/j.celrep.2020.108185
Combes, A. J. et al. Global absence and targeting of protective immune states in severe COVID-19. Nature 591, 124–130 (2021).
pubmed: 33494096
pmcid: 8567458
doi: 10.1038/s41586-021-03234-7
Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2, 735–747 (2002).
pubmed: 12360212
doi: 10.1038/nri911
Meckiff, B. J. et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4(+) T cells in COVID-19. Cell 183, 1340–1353.e1316 (2020).
pubmed: 33096020
pmcid: 7534589
doi: 10.1016/j.cell.2020.10.001
Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020).
pubmed: 32826343
pmcid: 7665314
doi: 10.1126/sciimmunol.abd6832
Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012).
pubmed: 22421787
pmcid: 4686144
doi: 10.1038/nri3173
Wang, W. H., et al. The role of galectins in virus infection - a systemic literature review. J. Microbiol. Immunol. Infect. 53, 925–935 (2019).
Narumi, K. et al. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J. Immunol. 194, 5539–5548 (2015).
pubmed: 25911757
doi: 10.4049/jimmunol.1402301
Klein, E., Di Renzo, L. & Yefenof, E. Contribution of CR3, CD11b/CD18 to cytolysis by human NK cells. Mol. Immunol. 27, 1343–1347 (1990).
pubmed: 1980339
doi: 10.1016/0161-5890(90)90041-W
Reyes, R., Cardenes, B., Machado-Pineda, Y. & Cabanas, C. Tetraspanin CD9: a key regulator of cell adhesion in the immune system. Front. Immunol. 9, 863 (2018).
pubmed: 29760699
pmcid: 5936783
doi: 10.3389/fimmu.2018.00863
Huntington, N. D., Cursons, J. & Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).
pubmed: 32581320
doi: 10.1038/s41568-020-0272-z
Peixoto, A. N. et al. CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response. J. Exp. Med. 204, 1193–1205 (2007).
pubmed: 17485515
pmcid: 2118592
doi: 10.1084/jem.20062349
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264
pmcid: 7159299
doi: 10.1016/S0140-6736(20)30183-5
Nicolai, L. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 142, 1176–1189 (2020).
pubmed: 32755393
pmcid: 7497892
doi: 10.1161/CIRCULATIONAHA.120.048488
Saini, R. V. et al. Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells. J. Immunol. 186, 3497–3504 (2011).
pubmed: 21296981
doi: 10.4049/jimmunol.1003409
Silvin, A. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 182, 1401–1418 (2020).
pubmed: 32810439
pmcid: 7405878
doi: 10.1016/j.cell.2020.08.002
Chalifour, A. et al. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production. Blood 104, 1778–1783 (2004).
pubmed: 15166032
doi: 10.1182/blood-2003-08-2820
Brook, M. et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc. Natl Acad. Sci. USA 113, 4350 (2016).
pubmed: 27044108
pmcid: 4843457
doi: 10.1073/pnas.1601831113
Martinvalet, D., Zhu, P. & Lieberman, J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22, 355–370 (2005).
pubmed: 15780992
doi: 10.1016/j.immuni.2005.02.004
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).
pubmed: 26205583
pmcid: 4889009
doi: 10.1038/nri3862
Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620–631 (2011).
pubmed: 21376175
pmcid: 3065205
doi: 10.1016/j.yexcr.2010.12.017
De Rosa, S. C., Herzenberg, L. A., Herzenberg, L. A. & Roederer, M. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 7, 245–248 (2001).
pubmed: 11175858
doi: 10.1038/84701
Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout Life. Immunity 48, 202–213 (2018).
pubmed: 29466753
pmcid: 5826622
doi: 10.1016/j.immuni.2018.01.007
Koizumi, S.-i et al. JunB regulates homeostasis and suppressive functions of effector regulatory T cells. Nat. Commun. 9, 5344 (2018).
pubmed: 30559442
pmcid: 6297218
doi: 10.1038/s41467-018-07735-4
Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).
pubmed: 9069263
doi: 10.1016/S0955-0674(97)80068-3
Rincon, M. & Flavell, R. A. T-cell subsets: transcriptional control in the Th1/Th2 decision. Curr. Biol. 7, R729–R732 (1997).
pubmed: 9382795
doi: 10.1016/S0960-9822(06)00368-X
Ho, I. C., Tai, T. S. & Pai, S. Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol. 9, 125–135 (2009).
pubmed: 19151747
pmcid: 2998182
doi: 10.1038/nri2476
Berger, A. Th1 and Th2 responses: what are they? BMJ 321, 424–424 (2000).
pubmed: 10938051
pmcid: 27457
doi: 10.1136/bmj.321.7258.424
Juelke, K. et al. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116, 1299–1307 (2010).
pubmed: 20505160
doi: 10.1182/blood-2009-11-253286
Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440 (2020).
pubmed: 32810438
pmcid: 7405822
doi: 10.1016/j.cell.2020.08.001
Narasimhan, P. B., Marcovecchio, P., Hamers, A. A. J. & Hedrick, C. C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol. 37, 439–456 (2019).
pubmed: 31026415
doi: 10.1146/annurev-immunol-042617-053119
Chen, L. et al. CD83-stimulated monocytes suppress T-cell immune responses through production of prostaglandin E2. Proc. Natl Acad. Sci. USA 108, 18778 (2011).
pubmed: 22065790
pmcid: 3219128
doi: 10.1073/pnas.1018994108
Segovia, M. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 35, 767–781 (2019).
pubmed: 31085177
pmcid: 6521897
doi: 10.1016/j.ccell.2019.04.003
Hardbower, D. M. et al. EGFR regulates macrophage activation and function in bacterial infection. J. Clin. Investig. 126, 3296–3312 (2016).
pubmed: 27482886
pmcid: 5004944
doi: 10.1172/JCI83585
Zaiss, D. M. et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38, 275–284 (2013).
pubmed: 23333074
pmcid: 3582723
doi: 10.1016/j.immuni.2012.09.023
Minutti, C. M. et al. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 47, 710–722 (2017).
pubmed: 29045902
pmcid: 5654729
doi: 10.1016/j.immuni.2017.09.013
Shirasawa, S. et al. Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage. Proc. Natl Acad. Sci. USA 101, 13921–13926 (2004).
pubmed: 15365177
pmcid: 518854
doi: 10.1073/pnas.0404217101
Hoffmann-Vold, A.-M. et al. High level of chemokine CCL18 is associated with pulmonary function deterioration, lung fibrosis progression, and reduced survival in systemic sclerosis. Chest 150, 299–306 (2016).
pubmed: 26997242
doi: 10.1016/j.chest.2016.03.004
Pritsch, M. et al. Prevalence and risk factors of infection in the representative COVID-19 cohort munich. Int. J. Environ. Res. Public Health 18, 3572 (2021).
Radon, K. et al. Protocol of a population-based prospective COVID-19 cohort study Munich, Germany (KoCo19). BMC Public Health 20, 1036 (2020).
pubmed: 32605549
pmcid: 7324773
doi: 10.1186/s12889-020-09164-9
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).
pubmed: 18404147
pmcid: 2981145
doi: 10.1038/nature06904
Cheetham, S. W., Faulkner, G. J. & Dinger, M. E. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat. Rev. Genet. 21, 191–201 (2020).
pubmed: 31848477
doi: 10.1038/s41576-019-0196-1
Ziegler, C. G. K., et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. bioRxiv https://doi.org/10.1101/2021.02.20.431155 (2021).
Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).
pubmed: 30135581
pmcid: 6133715
doi: 10.1038/s41586-018-0449-8
Giovannini-Chami, L. et al. Distinct epithelial gene expression phenotypes in childhood respiratory allergy. Eur. Respir. J. 39, 1197–1205 (2012).
pubmed: 22005912
doi: 10.1183/09031936.00070511
Cheemarla, N. R. et al. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J. Exp. Med. 218, e20210583 (2021).
pubmed: 34128960
pmcid: 8210587
doi: 10.1084/jem.20210583
Thomas, E. & Saito, T. Special issue “IFN-independent ISG expression and its role in antiviral cell-intrinsic innateimmunity”. Viruses 11, 981 (2019).
Lee, J. S. & Shin, E.-C. The type I interferon response in COVID-19: implications for treatment. Nat. Rev. Immunol. 20, 585–586 (2020).
pubmed: 32788708
pmcid: 8824445
doi: 10.1038/s41577-020-00429-3
Banerjee, A. et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. Lancet 395, 1715–1725 (2020).
Chen, Z. & John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 20, 529–536 (2020).
pubmed: 32728222
pmcid: 7389156
doi: 10.1038/s41577-020-0402-6
Gil-Etayo, F. J. et al. T-helper cell subset response is a determining factor in COVID-19 progression. Front. Cell. Infect. Microbiol. 11, 79 (2021).
doi: 10.3389/fcimb.2021.624483
Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020).
Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495.e1420 (2020).
pubmed: 33171100
pmcid: 7598382
doi: 10.1016/j.cell.2020.10.037
Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3 (2020).
Krämer, B. et al. Early IFN-a signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 54, 2650–2669.e14 (2021).
Smith, N. et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat. Immunol. 22, 1428–1439 (2021).
Sposito, B. et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell 184, 4953–4968.e16 (2021).
Loske, J. et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01037-9 (2021).
Lopez, J. et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 218, e20211211 (2021).
pubmed: 34357402
pmcid: 8352718
doi: 10.1084/jem.20211211
Lee, S. et al. Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Intern. Med. 180, 1447–1452 (2020).
pubmed: 32780793
doi: 10.1001/jamainternmed.2020.3862
Le Borgne, P. et al. SARS-CoV-2 viral load in nasopharyngeal swabs in the emergency department does not predict COVID-19 severity and mortality. Acad. Emerg. Med. 28, 306–313 (2021).
pubmed: 33481307
pmcid: 8014851
doi: 10.1111/acem.14217
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264
pmcid: 7159299
doi: 10.1016/S0140-6736(20)30183-5
Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).
pubmed: 32171076
pmcid: 7270627
doi: 10.1016/S0140-6736(20)30566-3
Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
pubmed: 32031570
pmcid: 7042881
doi: 10.1001/jama.2020.1585
Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020).
pubmed: 32091533
doi: 10.1001/jama.2020.2648
Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).
pubmed: 32125452
doi: 10.1007/s00134-020-05991-x
McIntosh, K. COVID-19: Clinical features: Table 2 Laboratory features associated with severe COVID-19. In (ed Post, T. W.) (Waltham, MA, 2022).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019).
doi: 10.1186/s13059-019-1874-1
Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, baz046 (2019).
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651
pmcid: 3037419
doi: 10.1038/75556
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463
pmcid: 3339379
doi: 10.1089/omi.2011.0118
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Patzelt, J. & Langer, H. F. Platelets in angiogenesis. Curr. Vasc. Pharmacol. 10, 570–577 (2012).
pubmed: 22338572
doi: 10.2174/157016112801784648
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
pubmed: 30783653
pmcid: 6486549
doi: 10.1093/nar/gkz114
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
pubmed: 19910308
pmcid: 2796818
doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).
pubmed: 25573116
doi: 10.1002/cyto.a.22625
Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).
pubmed: 25358341
doi: 10.15252/msb.20145625
Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).
doi: 10.1074/mcp.M114.044305
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Jensen, L. J. et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009).
pubmed: 18940858
doi: 10.1093/nar/gkn760
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289
doi: 10.1093/nar/gky1106