Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 02 2022
Historique:
received: 21 10 2021
accepted: 28 01 2022
entrez: 24 2 2022
pubmed: 25 2 2022
medline: 5 3 2022
Statut: epublish

Résumé

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.

Identifiants

pubmed: 35197461
doi: 10.1038/s41467-022-28508-0
pii: 10.1038/s41467-022-28508-0
pmc: PMC8866527
doi:

Substances chimiques

Cytokines 0
Interferons 9008-11-1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1018

Informations de copyright

© 2022. The Author(s).

Références

Zhu, N., et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 382, 727–733 (2020).
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
pubmed: 32015507 pmcid: 7095418 doi: 10.1038/s41586-020-2012-7
Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).
Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest 130, 2620–2629 (2020).
pubmed: 32217835 pmcid: 7190990 doi: 10.1172/JCI137244
Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 26, 1623–1635 (2020).
pubmed: 32807934 doi: 10.1038/s41591-020-1038-6
Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020).
pubmed: 32669297 pmcid: 7402624 doi: 10.1126/science.abc8511
Torres Acosta, M. A. & Singer, B. D. Pathogenesis of COVID-19-induced ARDS: implications for an ageing population. Eur. Respir. J. 56, 2002049 (2020).
Vabret, N. et al. Immunology of COVID-19: current state of the science. Immunity 52, 910–941 (2020).
pubmed: 32505227 pmcid: 7200337 doi: 10.1016/j.immuni.2020.05.002
Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033 (2020).
pubmed: 32192578 pmcid: 7270045 doi: 10.1016/S0140-6736(20)30628-0
Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 26, 1636–1643 (2020).
pubmed: 32839624 pmcid: 7869028 doi: 10.1038/s41591-020-1051-9
Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210 (2020).
pubmed: 32788292 pmcid: 7665312 doi: 10.1126/science.abc6261
Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).
pubmed: 32661059 pmcid: 7402632 doi: 10.1126/science.abc6027
Acharya, D., Liu, G. & Gack, M. U. Dysregulation of type I interferon responses in COVID-19. Nat. Rev. Immunol. 20, 397–398 (2020).
Nicol, M. Q. et al. Lack of IFNgamma signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology 526, 155–164 (2019).
pubmed: 30390564 doi: 10.1016/j.virol.2018.10.017
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).
pubmed: 32972996 pmcid: 7857397 doi: 10.1126/science.abd4585
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).
pubmed: 32972995 pmcid: 7857407 doi: 10.1126/science.abd4570
Nicolai, L. et al. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J. Thromb. Haemost. 19, 574–581 (2021).
Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).
Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).
Gao, Z. et al. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect. 54, 12–16 (2020).
Garg, S. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 States, March 1–30, 2020. MMWR. Morb. Mortal. Weekly Rep. 69, 458–464 (2020).
Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020).
pubmed: 32591762 doi: 10.1038/s41587-020-0602-4
Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020).
pubmed: 32091533 doi: 10.1001/jama.2020.2648
Guan, W. J. et al. Clinical characteristics of Coronavirus Disease 2019 in China. New Engl. J. Med. 382, 1708–1720 (2020).
pubmed: 32109013 doi: 10.1056/NEJMoa2002032
Shu, T. et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19. Immunity 53, 1108–1122 (2020).
pubmed: 33128875 pmcid: 7574896 doi: 10.1016/j.immuni.2020.10.008
Kazer, S. W. et al. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat. Med. 26, 511–518 (2020).
pubmed: 32251406 pmcid: 7237067 doi: 10.1038/s41591-020-0799-2
Tran, T. N. & Bader, G. D. Tempora: cell trajectory inference using time-series single-cell RNA sequencing data. PLoS Comput. Biol. 16, e1008205 (2020).
pubmed: 32903255 pmcid: 7505465 doi: 10.1371/journal.pcbi.1008205
Busse, D. C. et al. Interferon-induced protein 44 and interferon-induced protein 44-like restrict replication of respiratory syncytial virus. J. Virol. 94, e00297–00220 (2020).
pubmed: 32611756 pmcid: 7459546 doi: 10.1128/JVI.00297-20
Yang, G., Xu, Y., Chen, X. & Hu, G. IFITM1 plays an essential role in the antiproliferative action of interferon-γ. Oncogene 26, 594–603 (2007).
pubmed: 16847454 doi: 10.1038/sj.onc.1209807
Verhelst, J., Parthoens, E., Schepens, B., Fiers, W. & Saelens, X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 86, 13445–13455 (2012).
pubmed: 23015724 pmcid: 3503048 doi: 10.1128/JVI.01682-12
Sun, Y. et al. Regulation of XAF1 expression in human colon cancer cell by interferon beta: activation by the transcription regulator STAT1. Cancer Lett. 260, 62–71 (2008).
pubmed: 18035482 doi: 10.1016/j.canlet.2007.10.014
Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).
pubmed: 21478870 pmcid: 3409588 doi: 10.1038/nature09907
Perng, Y. C. & Lenschow, D. J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16, 423–439 (2018).
pubmed: 29769653 pmcid: 7097117 doi: 10.1038/s41579-018-0020-5
Park, A. & Iwasaki, A. Type I and type III interferons–induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020).
Bizzotto, J. et al. SARS-CoV-2 infection boosts MX1 antiviral effector in COVID-19 patients. iScience 23, 101585 (2020).
pubmed: 32989429 pmcid: 7510433 doi: 10.1016/j.isci.2020.101585
Busse, D. C. et al. Interferon-induced protein 44 and interferon-induced protein 44-like restrict replication of respiratory syncytial virus. J. Virol. 94, e00297-20 (2020).
Shi, G. et al. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J. 40, e106501 (2021).
pubmed: 33270927 doi: 10.15252/embj.2020106501
Pfaender, S. et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nat. Microbiol. 5, 1330–1339 (2020).
pubmed: 32704094 pmcid: 7916999 doi: 10.1038/s41564-020-0769-y
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045.e1039 (2020).
pubmed: 32416070 pmcid: 7227586 doi: 10.1016/j.cell.2020.04.026
Konno, Y. et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity Is increased by a naturally occurring elongation variant. Cell Rep. 32, 108185 (2020).
pubmed: 32941788 pmcid: 7473339 doi: 10.1016/j.celrep.2020.108185
Combes, A. J. et al. Global absence and targeting of protective immune states in severe COVID-19. Nature 591, 124–130 (2021).
pubmed: 33494096 pmcid: 8567458 doi: 10.1038/s41586-021-03234-7
Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2, 735–747 (2002).
pubmed: 12360212 doi: 10.1038/nri911
Meckiff, B. J. et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4(+) T cells in COVID-19. Cell 183, 1340–1353.e1316 (2020).
pubmed: 33096020 pmcid: 7534589 doi: 10.1016/j.cell.2020.10.001
Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020).
pubmed: 32826343 pmcid: 7665314 doi: 10.1126/sciimmunol.abd6832
Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012).
pubmed: 22421787 pmcid: 4686144 doi: 10.1038/nri3173
Wang, W. H., et al. The role of galectins in virus infection - a systemic literature review. J. Microbiol. Immunol. Infect. 53, 925–935 (2019).
Narumi, K. et al. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J. Immunol. 194, 5539–5548 (2015).
pubmed: 25911757 doi: 10.4049/jimmunol.1402301
Klein, E., Di Renzo, L. & Yefenof, E. Contribution of CR3, CD11b/CD18 to cytolysis by human NK cells. Mol. Immunol. 27, 1343–1347 (1990).
pubmed: 1980339 doi: 10.1016/0161-5890(90)90041-W
Reyes, R., Cardenes, B., Machado-Pineda, Y. & Cabanas, C. Tetraspanin CD9: a key regulator of cell adhesion in the immune system. Front. Immunol. 9, 863 (2018).
pubmed: 29760699 pmcid: 5936783 doi: 10.3389/fimmu.2018.00863
Huntington, N. D., Cursons, J. & Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).
pubmed: 32581320 doi: 10.1038/s41568-020-0272-z
Peixoto, A. N. et al. CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response. J. Exp. Med. 204, 1193–1205 (2007).
pubmed: 17485515 pmcid: 2118592 doi: 10.1084/jem.20062349
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Nicolai, L. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 142, 1176–1189 (2020).
pubmed: 32755393 pmcid: 7497892 doi: 10.1161/CIRCULATIONAHA.120.048488
Saini, R. V. et al. Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells. J. Immunol. 186, 3497–3504 (2011).
pubmed: 21296981 doi: 10.4049/jimmunol.1003409
Silvin, A. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 182, 1401–1418 (2020).
pubmed: 32810439 pmcid: 7405878 doi: 10.1016/j.cell.2020.08.002
Chalifour, A. et al. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production. Blood 104, 1778–1783 (2004).
pubmed: 15166032 doi: 10.1182/blood-2003-08-2820
Brook, M. et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc. Natl Acad. Sci. USA 113, 4350 (2016).
pubmed: 27044108 pmcid: 4843457 doi: 10.1073/pnas.1601831113
Martinvalet, D., Zhu, P. & Lieberman, J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22, 355–370 (2005).
pubmed: 15780992 doi: 10.1016/j.immuni.2005.02.004
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).
pubmed: 26205583 pmcid: 4889009 doi: 10.1038/nri3862
Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620–631 (2011).
pubmed: 21376175 pmcid: 3065205 doi: 10.1016/j.yexcr.2010.12.017
De Rosa, S. C., Herzenberg, L. A., Herzenberg, L. A. & Roederer, M. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 7, 245–248 (2001).
pubmed: 11175858 doi: 10.1038/84701
Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout Life. Immunity 48, 202–213 (2018).
pubmed: 29466753 pmcid: 5826622 doi: 10.1016/j.immuni.2018.01.007
Koizumi, S.-i et al. JunB regulates homeostasis and suppressive functions of effector regulatory T cells. Nat. Commun. 9, 5344 (2018).
pubmed: 30559442 pmcid: 6297218 doi: 10.1038/s41467-018-07735-4
Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).
pubmed: 9069263 doi: 10.1016/S0955-0674(97)80068-3
Rincon, M. & Flavell, R. A. T-cell subsets: transcriptional control in the Th1/Th2 decision. Curr. Biol. 7, R729–R732 (1997).
pubmed: 9382795 doi: 10.1016/S0960-9822(06)00368-X
Ho, I. C., Tai, T. S. & Pai, S. Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol. 9, 125–135 (2009).
pubmed: 19151747 pmcid: 2998182 doi: 10.1038/nri2476
Berger, A. Th1 and Th2 responses: what are they? BMJ 321, 424–424 (2000).
pubmed: 10938051 pmcid: 27457 doi: 10.1136/bmj.321.7258.424
Juelke, K. et al. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116, 1299–1307 (2010).
pubmed: 20505160 doi: 10.1182/blood-2009-11-253286
Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440 (2020).
pubmed: 32810438 pmcid: 7405822 doi: 10.1016/j.cell.2020.08.001
Narasimhan, P. B., Marcovecchio, P., Hamers, A. A. J. & Hedrick, C. C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol. 37, 439–456 (2019).
pubmed: 31026415 doi: 10.1146/annurev-immunol-042617-053119
Chen, L. et al. CD83-stimulated monocytes suppress T-cell immune responses through production of prostaglandin E2. Proc. Natl Acad. Sci. USA 108, 18778 (2011).
pubmed: 22065790 pmcid: 3219128 doi: 10.1073/pnas.1018994108
Segovia, M. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 35, 767–781 (2019).
pubmed: 31085177 pmcid: 6521897 doi: 10.1016/j.ccell.2019.04.003
Hardbower, D. M. et al. EGFR regulates macrophage activation and function in bacterial infection. J. Clin. Investig. 126, 3296–3312 (2016).
pubmed: 27482886 pmcid: 5004944 doi: 10.1172/JCI83585
Zaiss, D. M. et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38, 275–284 (2013).
pubmed: 23333074 pmcid: 3582723 doi: 10.1016/j.immuni.2012.09.023
Minutti, C. M. et al. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 47, 710–722 (2017).
pubmed: 29045902 pmcid: 5654729 doi: 10.1016/j.immuni.2017.09.013
Shirasawa, S. et al. Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage. Proc. Natl Acad. Sci. USA 101, 13921–13926 (2004).
pubmed: 15365177 pmcid: 518854 doi: 10.1073/pnas.0404217101
Hoffmann-Vold, A.-M. et al. High level of chemokine CCL18 is associated with pulmonary function deterioration, lung fibrosis progression, and reduced survival in systemic sclerosis. Chest 150, 299–306 (2016).
pubmed: 26997242 doi: 10.1016/j.chest.2016.03.004
Pritsch, M. et al. Prevalence and risk factors of infection in the representative COVID-19 cohort munich. Int. J. Environ. Res. Public Health 18, 3572 (2021).
Radon, K. et al. Protocol of a population-based prospective COVID-19 cohort study Munich, Germany (KoCo19). BMC Public Health 20, 1036 (2020).
pubmed: 32605549 pmcid: 7324773 doi: 10.1186/s12889-020-09164-9
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).
pubmed: 18404147 pmcid: 2981145 doi: 10.1038/nature06904
Cheetham, S. W., Faulkner, G. J. & Dinger, M. E. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat. Rev. Genet. 21, 191–201 (2020).
pubmed: 31848477 doi: 10.1038/s41576-019-0196-1
Ziegler, C. G. K., et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. bioRxiv https://doi.org/10.1101/2021.02.20.431155 (2021).
Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).
pubmed: 30135581 pmcid: 6133715 doi: 10.1038/s41586-018-0449-8
Giovannini-Chami, L. et al. Distinct epithelial gene expression phenotypes in childhood respiratory allergy. Eur. Respir. J. 39, 1197–1205 (2012).
pubmed: 22005912 doi: 10.1183/09031936.00070511
Cheemarla, N. R. et al. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J. Exp. Med. 218, e20210583 (2021).
pubmed: 34128960 pmcid: 8210587 doi: 10.1084/jem.20210583
Thomas, E. & Saito, T. Special issue “IFN-independent ISG expression and its role in antiviral cell-intrinsic innateimmunity”. Viruses 11, 981 (2019).
Lee, J. S. & Shin, E.-C. The type I interferon response in COVID-19: implications for treatment. Nat. Rev. Immunol. 20, 585–586 (2020).
pubmed: 32788708 pmcid: 8824445 doi: 10.1038/s41577-020-00429-3
Banerjee, A. et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. Lancet 395, 1715–1725 (2020).
Chen, Z. & John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 20, 529–536 (2020).
pubmed: 32728222 pmcid: 7389156 doi: 10.1038/s41577-020-0402-6
Gil-Etayo, F. J. et al. T-helper cell subset response is a determining factor in COVID-19 progression. Front. Cell. Infect. Microbiol. 11, 79 (2021).
doi: 10.3389/fcimb.2021.624483
Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020).
Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495.e1420 (2020).
pubmed: 33171100 pmcid: 7598382 doi: 10.1016/j.cell.2020.10.037
Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3 (2020).
Krämer, B. et al. Early IFN-a signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 54, 2650–2669.e14 (2021).
Smith, N. et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat. Immunol. 22, 1428–1439 (2021).
Sposito, B. et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell 184, 4953–4968.e16 (2021).
Loske, J. et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01037-9 (2021).
Lopez, J. et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 218, e20211211 (2021).
pubmed: 34357402 pmcid: 8352718 doi: 10.1084/jem.20211211
Lee, S. et al. Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Intern. Med. 180, 1447–1452 (2020).
pubmed: 32780793 doi: 10.1001/jamainternmed.2020.3862
Le Borgne, P. et al. SARS-CoV-2 viral load in nasopharyngeal swabs in the emergency department does not predict COVID-19 severity and mortality. Acad. Emerg. Med. 28, 306–313 (2021).
pubmed: 33481307 pmcid: 8014851 doi: 10.1111/acem.14217
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).
pubmed: 32171076 pmcid: 7270627 doi: 10.1016/S0140-6736(20)30566-3
Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
pubmed: 32031570 pmcid: 7042881 doi: 10.1001/jama.2020.1585
Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020).
pubmed: 32091533 doi: 10.1001/jama.2020.2648
Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).
pubmed: 32125452 doi: 10.1007/s00134-020-05991-x
McIntosh, K. COVID-19: Clinical features: Table 2 Laboratory features associated with severe COVID-19. In (ed Post, T. W.) (Waltham, MA, 2022).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019).
doi: 10.1186/s13059-019-1874-1
Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, baz046 (2019).
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Patzelt, J. & Langer, H. F. Platelets in angiogenesis. Curr. Vasc. Pharmacol. 10, 570–577 (2012).
pubmed: 22338572 doi: 10.2174/157016112801784648
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
pubmed: 30783653 pmcid: 6486549 doi: 10.1093/nar/gkz114
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
pubmed: 19910308 pmcid: 2796818 doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).
pubmed: 25573116 doi: 10.1002/cyto.a.22625
Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).
pubmed: 25358341 doi: 10.15252/msb.20145625
Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).
doi: 10.1074/mcp.M114.044305
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Jensen, L. J. et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009).
pubmed: 18940858 doi: 10.1093/nar/gkn760
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289 doi: 10.1093/nar/gky1106

Auteurs

Kami Pekayvaz (K)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany. kami.pekayvaz@med.uni-muenchen.de.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany. kami.pekayvaz@med.uni-muenchen.de.

Alexander Leunig (A)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.

Rainer Kaiser (R)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.

Markus Joppich (M)

Department of Informatics, Ludwig-Maximilian Universität München, Munich, Germany.

Sophia Brambs (S)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.

Aleksandar Janjic (A)

Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University Munich, Munich, Germany.

Oliver Popp (O)

Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany.

Daniel Nixdorf (D)

Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany.
Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.

Valeria Fumagalli (V)

Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
Vita-Salute San Raffaele University, 20132, Milan, Italy.

Nora Schmidt (N)

Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany.

Vivien Polewka (V)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.

Afra Anjum (A)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.

Viktoria Knottenberg (V)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.

Luke Eivers (L)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.

Lucas E Wange (LE)

Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University Munich, Munich, Germany.

Christoph Gold (C)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.

Marieluise Kirchner (M)

Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany.

Maximilian Muenchhoff (M)

Max von Pettenkofer Institute & GeneCenter, Virology, Faculty of Medicine, LMU München, Munich, Germany.
German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.

Johannes C Hellmuth (JC)

Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.

Clemens Scherer (C)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.

Raquel Rubio-Acero (R)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Tabea Eser (T)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Flora Deák (F)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Kerstin Puchinger (K)

Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Niklas Kuhl (N)

Gene Center and Department of Biochemistry, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.
Department of Medicine II, University Hospital, LMU Munich, Munich, Germany.

Andreas Linder (A)

Gene Center and Department of Biochemistry, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.
Department of Medicine II, University Hospital, LMU Munich, Munich, Germany.

Kathrin Saar (K)

Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.

Lukas Tomas (L)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.

Christian Schulz (C)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.

Andreas Wieser (A)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Wolfgang Enard (W)

Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University Munich, Munich, Germany.

Inge Kroidl (I)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Christof Geldmacher (C)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Michael von Bergwelt-Baildon (M)

Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.

Oliver T Keppler (OT)

Max von Pettenkofer Institute & GeneCenter, Virology, Faculty of Medicine, LMU München, Munich, Germany.
German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.

Mathias Munschauer (M)

Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany.

Matteo Iannacone (M)

Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
Vita-Salute San Raffaele University, 20132, Milan, Italy.
Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.

Ralf Zimmer (R)

Department of Informatics, Ludwig-Maximilian Universität München, Munich, Germany.

Philipp Mertins (P)

Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany.

Norbert Hubner (N)

Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.

Michael Hoelscher (M)

German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
Division of Infectious Diseases and Tropical Medicine, University Hospital Ludwig-Maximilian University Munich, Munich, Germany.

Steffen Massberg (S)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.

Konstantin Stark (K)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany. konstantin.stark@med.uni-muenchen.de.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany. konstantin.stark@med.uni-muenchen.de.

Leo Nicolai (L)

Department of Medicine I, University Hospital, LMU Munich, Munich, Germany. leo.nicolai@med.uni-muenchen.de.
DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany. leo.nicolai@med.uni-muenchen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH