Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
25 02 2022
Historique:
received: 04 01 2021
accepted: 27 01 2022
entrez: 26 2 2022
pubmed: 27 2 2022
medline: 13 4 2022
Statut: epublish

Résumé

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1-4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.

Identifiants

pubmed: 35217677
doi: 10.1038/s41467-022-28591-3
pii: 10.1038/s41467-022-28591-3
pmc: PMC8881459
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1056

Subventions

Organisme : NIMH NIH HHS
ID : R21 MH116473
Pays : United States
Organisme : NINDS NIH HHS
ID : U19 NS107464
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Power, J., Schlaggar, B. & Petersen, S. Studying brain organization via spontaneous fMRI Signal. Neuron 84, 681–696 (2014).
pubmed: 25459408 pmcid: 4254503 doi: 10.1016/j.neuron.2014.09.007
Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol 6, e159 (2008).
Wang, Z. et al. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 78, 1116–1126 (2013).
pubmed: 23791200 pmcid: 3723346 doi: 10.1016/j.neuron.2013.04.023
Coletta, L. et al. Network structure of the mouse brain connectome with voxel resolution. Sci. Adv. 6, eabb7187 (2020).
pubmed: 33355124 doi: 10.1126/sciadv.abb7187
Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).
pubmed: 19188601 pmcid: 2634800 doi: 10.1073/pnas.0811168106
Goni, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl Acad. Sci. USA 111, 833–838 (2014).
pubmed: 24379387 doi: 10.1073/pnas.1315529111
O’Reilly, J. X. et al. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proc. Natl Acad. Sci. USA 110, 13982–13987 (2013).
pubmed: 23924609 pmcid: 3752223 doi: 10.1073/pnas.1305062110
Grayson, D. S. et al. The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91, 453–466 (2016).
pubmed: 27477019 pmcid: 5233431 doi: 10.1016/j.neuron.2016.06.005
Ponce-Alvarez, A. et al. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput. Biol. 11, e1004100 (2015).
pubmed: 25692996 pmcid: 4333573 doi: 10.1371/journal.pcbi.1004100
Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L. & Sporns, O. Modeling the impact of lesions in the human brain. PLOS Comput. Biol. 5, e1000408 (2009).
pubmed: 19521503 pmcid: 2688028 doi: 10.1371/journal.pcbi.1000408
Gent, T. C., Bandarabadi, M., Herrera, C. G. & Adamantidis, A. R. Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21, 974–984 (2018).
pubmed: 29892048 pmcid: 6438460 doi: 10.1038/s41593-018-0164-7
Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 9, 395 (2018).
pubmed: 29374172 pmcid: 5786066 doi: 10.1038/s41467-017-02815-3
Munn, B. R., Müller, E. J., Wainstein, G. & Shine, J. M. The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat. Commun. 12, 6016 (2021).
pubmed: 34650039 pmcid: 8516926 doi: 10.1038/s41467-021-26268-x
Sforazzini, F. et al. Altered functional connectivity networks in acallosal and socially impaired BTBR mice. Brain Struct. Funct. 221, 941–954 (2016).
pubmed: 25445840 doi: 10.1007/s00429-014-0948-9
Tyszka, J. M., Kennedy, D. P., Adolphs, R. & Paul, L. K. Intact bilateral resting-state networks in the absence of the corpus callosum. J. Neurosci. 31, 15154–15162 (2011).
pubmed: 22016549 pmcid: 3221732 doi: 10.1523/JNEUROSCI.1453-11.2011
Eldaief, M. C., Halko, M. A., Buckner, R. L. & Pascual-Leone, A. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Proc. Natl Acad. Sci. USA 108, 21229 (2011).
pubmed: 22160708 pmcid: 3248528 doi: 10.1073/pnas.1113103109
Pagani, M. et al. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat. Commun. 12, 6084 (2021).
pubmed: 34667149 pmcid: 8526836 doi: 10.1038/s41467-021-26131-z
Hillary, F. G. & Grafman, J. H. Injured brains and adaptive networks: the benefits and costs of hyperconnectivity. Trends Cogn. Sci. 21, 385–401 (2017).
pubmed: 28372878 pmcid: 6664441 doi: 10.1016/j.tics.2017.03.003
Siegel, J. S. et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Natl Acad. Sci. USA 113, E4367–E4376 (2016).
pubmed: 27402738 pmcid: 4968743 doi: 10.1073/pnas.1521083113
Giorgi, A. et al. Brainwide mapping of endogenous serotonergic transmission via chemogenetic-fMRI. Cell Rep. 21, 910–918 (2017).
Whitesell, J. D. et al. Regional, layer, and cell-class specific connectivity of the mouse default mode network. Neuron (2020).
Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).
Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511, 596 (2014).
pubmed: 25043046 pmcid: 4117808 doi: 10.1038/nature13321
Beier, K. T. et al. Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature 549, 345 (2017).
pubmed: 28902833 pmcid: 6069680 doi: 10.1038/nature23888
Bertero, A. et al. Autism-associated 16p11.2 microdeletion impairs prefrontal functional connectivity in mouse and human. Brain 141, 2055–2065 (2018).
pubmed: 29722793 doi: 10.1093/brain/awy111
Pagani, M. et al. Deletion of autism risk gene Shank3 disrupts prefrontal connectivity. J. Neurosci. 9, 2529–2518 (2019).
Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).
pubmed: 28772120 pmcid: 5830081 doi: 10.1016/j.neuron.2017.06.050
Nathanson, J. L., Yanagawa, Y., Obata, K. & Callaway, E. M. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161, 441–450 (2009).
pubmed: 19318117 doi: 10.1016/j.neuroscience.2009.03.032
Jendryka, M. et al. Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Sci. Rep. 9, 4522 (2019).
pubmed: 30872749 pmcid: 6418145 doi: 10.1038/s41598-019-41088-2
Trakoshis, S. et al. Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. eLife 9, e55684 (2020).
pubmed: 32746967 pmcid: 7402681 doi: 10.7554/eLife.55684
Schmidt, B., Duin, A. A. & Redish, A. D. Disrupting the medial prefrontal cortex alters hippocampal sequences during deliberative decision making. J. Neurophysiol. 121, 1981–2000 (2019).
pubmed: 30892976 pmcid: 6620703 doi: 10.1152/jn.00793.2018
Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).
pubmed: 18548064 doi: 10.1038/nature06976
Gutierrez-Barragan, D., Basson, M. A., Panzeri, S. & Gozzi, A. Infraslow state fluctuations govern spontaneous fMRI network dynamics. Curr. Biol. 29, 2295–2306.e2295 (2019).
pubmed: 31303490 pmcid: 6657681 doi: 10.1016/j.cub.2019.06.017
Turchi, J. et al. The basal forebrain regulates global resting-state fMRI fluctuations. Neuron 97, 940–952.e944 (2018).
pubmed: 29398365 pmcid: 5823771 doi: 10.1016/j.neuron.2018.01.032
Grandjean, J. et al. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage 205, 116278 (2020).
pubmed: 31614221 doi: 10.1016/j.neuroimage.2019.116278
Lee, S.-H. et al. An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. NeuroImage 243, 118541 (2021).
Mitchell, A. S. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci. Biobehav. Rev. 54, 76–88 (2015).
pubmed: 25757689 doi: 10.1016/j.neubiorev.2015.03.001
Schleifer, C. et al. Dissociable disruptions in thalamic and hippocampal resting-state functional connectivity in youth with 22q11. 2 deletions. J. Neuroscience, 39, 1301–1319. (2019)
Hughes, S. W. et al. Infraslow (<0.1Hz) oscillations in thalamic relay nuclei: basic mechanisms and significance to health and disease states. Prog. Brain Res. 193 145–162 (2011).
He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D. & Raichle, M. E. Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc. Natl Acad. Sci. USA 105, 16039–16044 (2008).
pubmed: 18843113 pmcid: 2564983 doi: 10.1073/pnas.0807010105
Nir, Y. et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci. 11, 1100–1108 (2008).
pubmed: 19160509 pmcid: 2642673 doi: 10.1038/nn.2177
Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013).
pubmed: 24135696 doi: 10.1038/nrn3599
van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl Acad. Sci. USA 111, 14332–14341 (2014).
pubmed: 25205811 pmcid: 4210002 doi: 10.1073/pnas.1402773111
Bosman Conrado, A. et al. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75, 875–888 (2012).
pubmed: 22958827 pmcid: 3457649 doi: 10.1016/j.neuron.2012.06.037
Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B. & Panzeri, S. Shifts of gamma phase across primary visual cortical sites reflect dynamic stimulus-modulated information transfer. PLoS Biol. 13, e1002257 (2015).
pubmed: 26394205 pmcid: 4579086 doi: 10.1371/journal.pbio.1002257
Mateo, C., Knutsen, P. M., Tsai, P. S., Shih, A. Y. & Kleinfeld, D. Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “resting-state” connectivity. Neuron 96, 936–948.e933 (2017).
pubmed: 29107517 pmcid: 5851777 doi: 10.1016/j.neuron.2017.10.012
Wang, L., Saalmann Yuri, B., Pinsk Mark, A., Arcaro Michael, J. & Kastner, S. Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron 76, 1010–1020 (2012).
pubmed: 23217748 pmcid: 3531830 doi: 10.1016/j.neuron.2012.09.033
Bowyer, S. M. Coherence a measure of the brain networks: past and present. Neuropsychiatr. Electrophysiol. 2, 1 (2016).
doi: 10.1186/s40810-015-0015-7
Mitra, A. et al. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98, 297–305.e296 (2018).
pubmed: 29606579 pmcid: 5910292 doi: 10.1016/j.neuron.2018.03.015
Friston, K. J. & Büchel, C. Functional Connectivity: Eigenimages and Multivariate Analyses. Human Brain Function, 999–1018 (2004).
Pan, W.-J., Thompson, G. J., Magnuson, M. E., Jaeger, D. & Keilholz, S. Infraslow LFP correlates to resting-state fMRI BOLD signals. NeuroImage 74, 288–297 (2013).
pubmed: 23481462 doi: 10.1016/j.neuroimage.2013.02.035
Hughes, S. W., Cope, D. W., Blethyn, K. L. & Crunelli, V. Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33, 947–958 (2002).
pubmed: 11906700 doi: 10.1016/S0896-6273(02)00623-2
David, F. et al. Essential thalamic contribution to slow waves of natural sleep. J. Neurosci. 33, 19599–19610 (2013).
pubmed: 24336724 pmcid: 3858629 doi: 10.1523/JNEUROSCI.3169-13.2013
Safaai, H., Neves, R., Eschenko, O., Logothetis, N. K. & Panzeri, S. Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. Proc. Natl Acad. Sci. USA 112, 12834–12839 (2015).
pubmed: 26417078 pmcid: 4611622 doi: 10.1073/pnas.1516539112
Narikiyo, K. et al. The claustrum coordinates cortical slow-wave activity. Nat. Neurosci. 23, 741–753 (2020).
Lu, H. et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc. Natl Acad. Sci. USA 104, 18265–18269 (2007).
pubmed: 17991778 pmcid: 2084331 doi: 10.1073/pnas.0705791104
Lu, H. et al. Low- but not high-frequency LFP correlates with spontaneous BOLD fluctuations in rat whisker barrel cortex. Cereb. Cortex 26, 683–694 (2014).
Neuner, I. et al. The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study. PLoS ONE 9, e88214 (2014).
pubmed: 24505434 pmcid: 3914938 doi: 10.1371/journal.pone.0088214
Chan, R. W. et al. Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity. Proc. Natl Acad. Sci. USA 114, E6972–E6981 (2017).
pubmed: 28760982 pmcid: 5565425 doi: 10.1073/pnas.1703309114
Franks, N. P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370 (2008).
pubmed: 18425091 doi: 10.1038/nrn2372
Watanabe, T. et al. Bidirectional effects on interhemispheric resting-state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation. Hum. Brain Mapp. 35, 1896–1905 (2014).
pubmed: 23897535 doi: 10.1002/hbm.22300
Strens, L. H. A. et al. The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin. Neurophysiol. 113, 1279–1285 (2002).
pubmed: 12140008 doi: 10.1016/S1388-2457(02)00151-7
Dubovik, S. et al. The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 61, 249–257 (2012).
pubmed: 22440653 doi: 10.1016/j.neuroimage.2012.03.024
Ranasinghe, K. G. et al. Neurophysiological signatures in Alzheimer’s disease are distinctly associated with TAU, amyloid-β accumulation, and cognitive decline. Sci. Transl. Med. 12, eaaz4069 (2020).
pubmed: 32161102 pmcid: 7138514 doi: 10.1126/scitranslmed.aaz4069
Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76, 1210–1224 (2012).
pubmed: 23259955 pmcid: 3556488 doi: 10.1016/j.neuron.2012.10.014
Tu, W., Ma, Z., Ma, Y., Dopfel, D. & Zhang, N. Suppressing anterior cingulate cortex modulates default mode network and behavior in awake rats. Cereb. Cortex 31, 312-323 (2020).
Gutierrez-Barragan, D. et al. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr. Biol. 32, 631-644.e6 (2022).
Markicevic, M. et al. Cortical Excitation:Inhibition Imbalance Causes Abnormal Brain Network Dynamics as Observed in Neurodevelopmental Disorders. Cereb. Cortex 30, 4922–4937 (2020).
Peeters, L. M. et al. Chemogenetic silencing of neurons in the mouse anterior cingulate area modulates neuronal activity and functional connectivity. NeuroImage 220, 117088 (2020).
pubmed: 32592851 doi: 10.1016/j.neuroimage.2020.117088
Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).
pubmed: 28774929 pmcid: 7309169 doi: 10.1126/science.aan2475
Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).
pubmed: 19396156 pmcid: 3655711 doi: 10.1038/nature08002
Carlén, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).
pubmed: 29074767 doi: 10.1126/science.aan8868
Vogt, B. & Paxinos, G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct. Funct. 219, 185–192 (2014).
pubmed: 23229151 doi: 10.1007/s00429-012-0493-3
Paxinos G. & Franklin K. The Mouse Brain in Stereotaxic Coordinates, 1 edn. (Academic Press, 2003).
Sforazzini, F., Schwarz, A. J., Galbusera, A., Bifone, A. & Gozzi, A. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Neuroimage 87, 403–415 (2014).
pubmed: 24080504 doi: 10.1016/j.neuroimage.2013.09.050
Ferrari, L. et al. A robust experimental protocol for pharmacological fMRI in rats and mice. J. Neurosci. Methods 204, 9–18 (2012).
pubmed: 22068031 doi: 10.1016/j.jneumeth.2011.10.020
Gozzi, A. et al. A multimodality investigation of cerebral hemodynamics and autoregulation in pharmacological MRI. Magn. Reson. Imaging 25, 826–833 (2007).
pubmed: 17451905 doi: 10.1016/j.mri.2007.03.003
Liska, A., Galbusera, A., Schwarz, A. J. & Gozzi, A. Functional connectivity hubs of the mouse brain. Neuroimage 115, 281–291 (2015).
pubmed: 25913701 doi: 10.1016/j.neuroimage.2015.04.033
Wu, G. R. et al. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17, 365–374 (2013).
pubmed: 23422254 doi: 10.1016/j.media.2013.01.003
Vassilvitskii, S. & Arthur, D. k-means++: The advantages of careful seeding. Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms. 1027–1035 (2006).
Schleifer, C. et al. Dissociable disruptions in thalamic and hippocampal resting-state functional connectivity in youth with 22q11. 2 deletions. J Neurosci. 39, 1301–1319 (2019).
pubmed: 30478034 pmcid: 6381244 doi: 10.1523/JNEUROSCI.3470-17.2018
Belitski, A. et al. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28, 5696–5709 (2008).
pubmed: 18509031 pmcid: 6670798 doi: 10.1523/JNEUROSCI.0009-08.2008
Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics 15, 70–73 (1967).
doi: 10.1109/TAU.1967.1161901
Berens P. CircStat: AMATLABToolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

Auteurs

Federico Rocchi (F)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.

Carola Canella (C)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.

Shahryar Noei (S)

Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.
Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.

Daniel Gutierrez-Barragan (D)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.

Ludovico Coletta (L)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.

Alberto Galbusera (A)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.

Alexia Stuefer (A)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.

Stefano Vassanelli (S)

Dept. of Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, Italy.

Massimo Pasqualetti (M)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
Biology Department, University of Pisa, Pisa, Italy.

Giuliano Iurilli (G)

Systems Neurobiology Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.

Stefano Panzeri (S)

Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy. s.panzeri@uke.de.
Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. s.panzeri@uke.de.

Alessandro Gozzi (A)

Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy. alessandro.gozzi@iit.it.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH