MoOpy2 is essential for fungal development, pathogenicity, and autophagy in Magnaporthe oryzae.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
revised:
07
02
2022
received:
15
12
2021
accepted:
20
02
2022
pubmed:
2
3
2022
medline:
9
4
2022
entrez:
1
3
2022
Statut:
ppublish
Résumé
The development and pathogenicity of the fungus Magnaporthe oryzae, the causal agent of destructive rice blast disease, require it to perceive external environmental signals. Opy2, an overproduction-induced pheromone-resistant protein 2, is a crucial protein for sensing external signals in Saccharomyces cerevisiae. However, the biological functions of the homologue of Opy2 in M. oryzae are unclear. In this study, we identified that MoOPY2 is involved in fungal development, pathogenicity, and autophagy in M. oryzae. Deletion of MoOPY2 resulted in pleiotropic defects in hyphal growth, conidiation, germ tube extension, appressorium formation, appressorium turgor generation, and invasive growth, therefore leading to attenuated pathogenicity. Furthermore, MoOpy2 participates in the Osm1 MAPK pathway and the Mps1 MAPK pathway by interacting with the adaptor protein Mst50. The interaction sites of Mst50 and MoOpy2 colocalized with the autophagic marker protein MoAtg8 in the preautophagosomal structure sites (PAS). Notably, the ΔMoopy2 mutant caused cumulative MoAtg8 lipidation and rapid GFP-MoAtg8 degradation in response to nitrogen starvation, showing that MoOpy2 is involved in the negative regulation of autophagy activity. Taken together, our study revealed that MoOpy2 of M. oryzae plays an essential role in the orchestration of fungal development, appressorium penetration, autophagy and pathogenesis.
Identifiants
pubmed: 35229430
doi: 10.1111/1462-2920.15949
doi:
Substances chimiques
Fungal Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1653-1671Informations de copyright
© 2022 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Beckerman, J.L., and Ebbole, D.J. (1996) MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact 9: 450-456.
Cross, A.R., and Jones, O.T. (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237: 111-116.
de Jong, J.C., MC Cormack, B.J., Smirnoff, N., and Talbot, N.J. (1997) Glycerol generates turgor in rice blast. Nature 389: 244-245.
Dixon, K.P., Xu, J.R., Smirnoff, N., and Talbot, N.J. (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11: 2045-2058.
Egan, M.J., Wang, Z.Y., Jones, M.A., Smirnoff, N., and Talbot, N.J. (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 104: 11772-11777.
Fernandez, J., Marroquin-Guzman, M., and Wilson, R.A. (2014) Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. PLoS Pathog 10: e1004354.
Fernandez, J., and Orth, K. (2018) Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol 26: 582-597.
Franceschetti, M., Bueno, E., Wilson, R.A., Tucker, S.L., Gomez-Mena, C., Calder, G., and Sesma, A. (2011) Fungal virulence and development is regulated by alternative pre-mRNA 3'end processing in Magnaporthe oryzae. PLoS Pathog 7: e1002441.
Gao, H.M., Liu, X.G., Shi, H.B., Lu, J.P., Yang, J., Lin, F.C., and Liu, X.H. (2013) MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol 164: 300-309.
Gonzalez, A., and Hall, M.N. (2017) Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 36: 397-408.
Guo, M., Tan, L., Nie, X., and Zhang, Z. (2017a) A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Virulence 8: 1335-1354.
Guo, N., Qian, Y., Zhang, Q., Chen, X., Zeng, G., Zhang, X., et al. (2017b) Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nat Commun 8: 1565.
He, M., Xu, Y., Chen, J., Luo, Y., Lv, Y., Su, J., et al. (2018) MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 14: 1543-1561.
Herrero de Dios, C., Roman, E., Diez, C., Alonso-Monge, R., and Pla, J. (2013) The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans. Fungal Genet Biol 50: 21-32.
Howard, R.J., Ferrari, M.A., Roach, D.H., and Money, N.P. (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci U S A 88: 11281-11284.
Jeon, J., Goh, J., Yoo, S., Chi, M.H., Choi, J., Rho, H.S., et al. (2008) A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol Plant Microbe Interact 21: 525-534.
Jiang, C., Zhang, X., Liu, H., and Xu, J.R. (2018) Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog 14: e1006875.
Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K., and Ohsumi, Y. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30: 1049-1058.
Kankanala, P., Czymmek, K., and Valent, B. (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19: 706-724.
Kershaw, M.J., and Talbot, N.J. (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A 106: 15967-15972.
Klionsky, D.J., Abdalla, F.C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli, K., et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445-544.
Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell 132: 27-42.
Levine, B., and Yuan, J. (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679-2688.
Li, G., Zhang, X., Tian, H., Choi, Y.E., Tao, W.A., and Xu, J.R. (2017) MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 19: 1959-1974.
Li, G., Zhou, X., and Xu, J.R. (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15: 678-684.
Liu, W., Zhou, X., Li, G., Li, L., Kong, L., Wang, C., et al. (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7: e1001261.
Liu, X.H., Chen, S.M., Gao, H.M., Ning, G.A., Shi, H.B., Wang, Y., et al. (2015) The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae. Environ Microbiol 17: 4495-4510.
Liu, X.H., Gao, H.M., Xu, F., Lu, J.P., Devenish, R.J., and Lin, F.C. (2012) Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy 8: 1415-1425.
Liu, X.H., Lu, J.P., Zhang, L., Dong, B., Min, H., and Lin, F.C. (2007) Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6: 997-1005.
Lu, J., Cao, H., Zhang, L., Huang, P., and Lin, F. (2014) Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 10: e1004432.
Mao, K., Wang, K., Zhao, M., Xu, T., and Klionsky, D.J. (2011) Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193: 755-767.
Marroquin-Guzman, M., Sun, G., and Wilson, R.A. (2017) Glucose-ABL1-TOR signaling modulates cell cycle tuning to control terminal appressorial cell differentiation. PLoS Genet 13: e1006557.
Matsui, Y., Kyoi, S., Takagi, H., Hsu, C.P., Hariharan, N., Ago, T., et al. (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4: 409-415.
Mehrabi, R., Ding, S., and Xu, J.R. (2008) MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7: 791-799.
Nair, U., Yen, W.L., Mari, M., Cao, Y., Xie, Z., Baba, M., et al. (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8: 780-793.
Nasir, F., Tian, L., Chang, C., Li, X., Gao, Y., Tran, L.P., and Tian, C. (2018) Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. Semin Cell Dev Biol 83: 95-105.
Ohsumi, Y. (2014) Historical landmarks of autophagy research. Cell Res 24: 9-23.
Qi, Z., Wang, Q., Dou, X., Wang, W., Zhao, Q., Lv, R., et al. (2012) MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 13: 677-689.
Que, Y., Yue, X., Yang, N., Xu, Z., Tang, S., Wang, C., et al. (2020) Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Curr Genet 66: 155-171.
Soulard, A., Cohen, A., and Hall, M.N. (2009) TOR signaling in invertebrates. Curr Opin Cell Biol 21: 825-836.
Takayama, T., Yamamoto, K., Saito, H., and Tatebayashi, K. (2019) Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. PLoS One 14: e0211380.
Talbot, N.J., and Foster, A.J. (2001) Genetics and genomics of the rice blast fungus Magnaporthe grisea: developing an experimental model for understanding fungal diseases of cereals. Adv Bot Res 34: 263-287.
Thines, E., Weber, R.W., and Talbot, N.J. (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12: 1703-1718.
Tucker, S.L., and Talbot, N.J. (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39: 385-417.
Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G., and Talbot, N.J. (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312: 580-583.
Vijn, I., and Govers, F. (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4: 459-467.
Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40: 428-438.
Wilson, R.A., Jenkinson, J.M., Gibson, R.P., Littlechild, J.A., Wang, Z.Y., and Talbot, N.J. (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26: 3673-3685.
Wu, C., Jansen, G., Zhang, J., Thomas, D.Y., and Whiteway, M. (2006) Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes Dev 20: 734-746.
Yamamoto, K., Tatebayashi, K., and Saito, H. (2016) Binding of the extracellular eight-cysteine motif of Opy2 to the putative osmosensor Msb2 is essential for activation of the yeast high-osmolarity glycerol pathway. Mol Cell Biol 36: 475-487.
Yamamoto, K., Tatebayashi, K., Tanaka, K., and Saito, H. (2010) Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor. Mol Cell 40: 87-98.
Yan, G., Lai, Y., and Jiang, Y. (2012) The TOR complex 1 is a direct target of Rho1 GTPase. Mol Cell 45: 743-753.
Yan, Y., Wang, H., Zhu, S., Wang, J., Liu, X., Lin, F., and Lu, J. (2019) The methylcitrate cycle is required for development and virulence in the rice blast fungus Pyricularia oryzae. Mol Plant Microbe Interact 32: 1148-1161.
Yin, Z., Feng, W., Chen, C., Xu, J., Li, Y., Yang, L., et al. (2020) Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae. Autophagy 16: 900-916.
Zhang, S., Liang, M., Naqvi, N.I., Lin, C., Qian, W., Zhang, L.H., and Deng, Y.Z. (2017) Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Autophagy 13: 1318-1330.
Zhu, X.M., Li, L., Cai, Y.Y., Wu, X.Y., Shi, H.B., Liang, S., et al. (2021) A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy 17: 2939-2961.
Zhu, X.M., Liang, S., Shi, H.B., Lu, J.P., Dong, B., Liao, Q.S., et al. (2018) VPS9 domain-containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae. Environ Microbiol 20: 1516-1530.