In-depth analysis of SARS-CoV-2-specific T cells reveals diverse differentiation hierarchies in vaccinated individuals.


Journal

JCI insight
ISSN: 2379-3708
Titre abrégé: JCI Insight
Pays: United States
ID NLM: 101676073

Informations de publication

Date de publication:
08 04 2022
Historique:
received: 11 11 2021
accepted: 23 02 2022
pubmed: 2 3 2022
medline: 12 4 2022
entrez: 1 3 2022
Statut: epublish

Résumé

SARS-CoV-2 vaccines pose as the most effective approach for mitigating the COVID-19 pandemic. High-degree efficacy of SARS-CoV-2 vaccines in clinical trials indicates that vaccination invariably induces an adaptive immune response. However, the emergence of breakthrough infections in vaccinated individuals suggests that the breadth and magnitude of vaccine-induced adaptive immune response may vary. We assessed vaccine-induced SARS-CoV-2 T cell response in 21 vaccinated individuals and found that SARS-CoV-2-specific T cells, which were mainly CD4+ T cells, were invariably detected in all individuals but the response was varied. We then investigated differentiation states and cytokine profiles to identify immune features associated with superior recall function and longevity. We identified SARS-CoV-2-specific CD4+ T cells were polyfunctional and produced high levels of IL-2, which could be associated with superior longevity. Based on the breadth and magnitude of vaccine-induced SARS-CoV-2 response, we identified 2 distinct response groups: individuals with high abundance versus low abundance of SARS-CoV-2-specific T cells. The fractions of TNF-α- and IL-2-producing SARS-CoV-2 T cells were the main determinants distinguishing high versus low responders. Last, we identified that the majority of vaccine-induced SARS-CoV-2 T cells were reactive against non-mutated regions of mutant S-protein, suggesting that vaccine-induced SARS-CoV-2 T cells could provide continued protection against emerging variants of concern.

Identifiants

pubmed: 35230977
pii: 156559
doi: 10.1172/jci.insight.156559
pmc: PMC9057595
doi:
pii:

Substances chimiques

COVID-19 Vaccines 0
Interleukin-2 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Vaccine. 2016 Apr 12;34(17):2008-14
pubmed: 26954467
Nat Rev Immunol. 2022 Jan;22(1):57-65
pubmed: 34876702
Sci Immunol. 2020 Jun 26;5(48):
pubmed: 32591408
N Engl J Med. 2018 Oct 11;379(15):1443-1451
pubmed: 30304652
Nat Immunol. 2021 May;22(5):620-626
pubmed: 33674800
N Engl J Med. 2007 Sep 13;357(11):1162-3
pubmed: 17855683
Immunity. 1998 Aug;9(2):229-37
pubmed: 9729043
J Exp Med. 2007 Jun 11;204(6):1405-16
pubmed: 17535971
N Engl J Med. 2021 Oct 14;385(16):1474-1484
pubmed: 34320281
Nature. 2020 Aug;584(7821):457-462
pubmed: 32668444
Lancet. 2021 Jun 19;397(10292):2331-2333
pubmed: 34090624
Cell. 2021 Feb 18;184(4):861-880
pubmed: 33497610
J Immunol. 2011 Jun 15;186(12):7264-8
pubmed: 21576510
Elife. 2021 Oct 12;10:
pubmed: 34636722
Cell. 2021 Apr 29;184(9):2372-2383.e9
pubmed: 33743213
Science. 2020 Dec 11;370(6522):1339-1343
pubmed: 33159009
Cell. 2020 Jun 25;181(7):1489-1501.e15
pubmed: 32473127
Nat Rev Cancer. 2012 Oct;12(10):671-84
pubmed: 22996603
Nat Med. 2021 Sep;27(9):1614-1621
pubmed: 34244681
PLoS One. 2011;6(7):e20775
pubmed: 21779319
Blood. 2017 Feb 9;129(6):740-758
pubmed: 27821506
N Engl J Med. 2021 Jun 10;384(23):2212-2218
pubmed: 33882219
Cell. 2020 Nov 12;183(4):996-1012.e19
pubmed: 33010815
Front Immunol. 2017 Mar 17;8:292
pubmed: 28367149
Nat Rev Immunol. 2012 Jan 20;12(2):136-48
pubmed: 22266691
Nat Rev Immunol. 2008 Apr;8(4):247-58
pubmed: 18323851
Nat Commun. 2021 Jun 28;12(1):3991
pubmed: 34183681
Nat Commun. 2021 Jun 30;12(1):4043
pubmed: 34193870
N Engl J Med. 2021 Feb 4;384(5):403-416
pubmed: 33378609
N Engl J Med. 2021 Jun 10;384(23):2259-2261
pubmed: 33822494
J Immunol. 2009 Jun 15;182(12):8047-55
pubmed: 19494330
Nature. 2021 Aug;596(7871):276-280
pubmed: 34237773
Nat Med. 2011 Sep 18;17(10):1290-7
pubmed: 21926977
Eur J Immunol. 2013 Nov;43(11):2797-809
pubmed: 24258910
J Exp Med. 2006 May 15;203(5):1249-58
pubmed: 16636134
Nat Med. 2007 Jul;13(7):843-50
pubmed: 17558415
J Immunol. 2010 Jun 15;184(12):6739-45
pubmed: 20483749
Cell. 2021 Apr 29;184(9):2523
pubmed: 33930298
Nature. 2019 Feb;566(7745):496-502
pubmed: 30787437
Nat Immunol. 2020 Nov;21(11):1336-1345
pubmed: 32887977
Annu Rev Immunol. 2004;22:745-63
pubmed: 15032595
Nat Rev Immunol. 2020 Jun;20(6):363-374
pubmed: 32346093
Lancet. 2021 May 15;397(10287):1819-1829
pubmed: 33964222
Med J Aust. 2021 Aug 16;215(4):149-151.e1
pubmed: 34296443
N Engl J Med. 2020 Dec 31;383(27):2603-2615
pubmed: 33301246

Auteurs

Li Li (L)

Department of Lymphoma and Myeloma.

Muharrem Muftuoglu (M)

Department of Leukemia, and.

Shaoheng Liang (S)

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Mahesh Basyal (M)

Department of Leukemia, and.

Jiangxing Lv (J)

Department of Lymphoma and Myeloma.

Mehmet Emin Akdogan (ME)

The University of Texas at San Antonio, San Antonio, Texas, USA.

Ken Chen (K)

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Michael Andreeff (M)

Department of Leukemia, and.

Christopher R Flowers (CR)

Department of Lymphoma and Myeloma.

Simrit Parmar (S)

Department of Lymphoma and Myeloma.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH