Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
03 2022
Historique:
received: 02 02 2021
accepted: 28 01 2022
pubmed: 5 3 2022
medline: 27 4 2022
entrez: 4 3 2022
Statut: ppublish

Résumé

Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N

Identifiants

pubmed: 35241804
doi: 10.1038/s41593-022-01027-3
pii: 10.1038/s41593-022-01027-3
doi:

Substances chimiques

N(6)-carboxymethyllysine 70YDX3Z2O7
Lysine K3Z4F929H6

Banques de données

figshare
['10.6084/m9.figshare.15179775.v1']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

295-305

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages—from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).
pubmed: 33556248 pmcid: 8085109 doi: 10.1146/annurev-immunol-093019-110159
Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 158, 15–24 (2014).
pubmed: 24995975 doi: 10.1016/j.cell.2014.06.008
Streit, W. J., Sammons, N. W., Kuhns, A. J. & Sparks, D. L. Dystrophic microglia in the aging human brain. Glia 45, 208–212 (2004).
pubmed: 14730714 doi: 10.1002/glia.10319
Johnson, K. V. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).
pubmed: 29691482 doi: 10.1038/s41579-018-0014-3
Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).
pubmed: 26030851 pmcid: 5528863 doi: 10.1038/nn.4030
Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).
pubmed: 27338705 doi: 10.1126/science.aad8670
Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e516 (2018).
pubmed: 29275859 pmcid: 5786503 doi: 10.1016/j.cell.2017.11.042
Abdel-Haq, R., Schlachetzki, J. C. M., Glass, C. K. & Mazmanian, S. K. Microbiome–microglia connections via the gut–brain axis. J. Exp. Med. 216, 41–59 (2019).
pubmed: 30385457 pmcid: 6314531 doi: 10.1084/jem.20180794
Mossad, O. & Blank, T. Getting on in old age: how the gut microbiota interferes with brain innate immunity. Front. Cell. Neurosci. 15, 698126 (2021).
pubmed: 34295223 pmcid: 8290125 doi: 10.3389/fncel.2021.698126
Lakshminarayanan, B., Stanton, C., O’Toole, P. W. & Ross, R. P. Compositional dynamics of the human intestinal microbiota with aging: implications for health. J. Nutr. Health Aging 18, 773–786 (2014).
pubmed: 25389954 doi: 10.1007/s12603-014-0549-6
O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).
pubmed: 26785481 doi: 10.1126/science.aac8469
Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).
pubmed: 25520805 pmcid: 4269096 doi: 10.1186/s40168-014-0050-9
Boehme, M. et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat. Aging 1, 666–676 (2021).
doi: 10.1038/s43587-021-00093-9
Mossad, O. et al. Microbiota-dependent increase in δ-valerobetaine alters neuronal function and is responsible for age-related cognitive decline. Nat. Aging 1, 1127–1136 (2021).
doi: 10.1038/s43587-021-00141-4
Uchimura, Y. et al. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49, 545–559.e5 (2018).
pubmed: 30193848 pmcid: 6162337 doi: 10.1016/j.immuni.2018.08.004
Tremblay, M.-È., Zettel, M. L., Ison, J. R., Allen, P. D. & Majewska, A. K. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60, 541–558 (2012).
pubmed: 22223464 pmcid: 3276747 doi: 10.1002/glia.22287
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008 pmcid: 2631488 doi: 10.1186/1471-2105-9-559
Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).
pubmed: 22048312 pmcid: 3468323 doi: 10.1038/nature10600
Streit, W. J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 29, 506–510 (2006).
pubmed: 16859761 doi: 10.1016/j.tins.2006.07.001
Sun, J., Druhan, L. J. & Zweier, J. L. Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 494, 130–137 (2010).
pubmed: 19932078 doi: 10.1016/j.abb.2009.11.019
Zhao, K., Huang, Z., Lu, H., Zhou, J. & Wei, T. Induction of inducible nitric oxide synthase increases the production of reactive oxygen species in RAW264.7 macrophages. Biosci. Rep. 30, 233–241 (2010).
pubmed: 19673702 doi: 10.1042/BSR20090048
Stefanatos, R. & Sanz, A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 592, 743–758 (2018).
pubmed: 29106705 doi: 10.1002/1873-3468.12902
Gomes, A. P. et al. Declining NAD
pubmed: 24360282 pmcid: 4076149 doi: 10.1016/j.cell.2013.11.037
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838 pmcid: 3836174 doi: 10.1016/j.cell.2013.05.039
Shi, H. et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9, 223 (2021).
pubmed: 34758889 pmcid: 8582174 doi: 10.1186/s40168-021-01172-0
Thangthaeng, N., Sumien, N. & Forster, M. J. Dissociation of functional status from accrual of CML and RAGE in the aged mouse brain. Exp. Gerontol. 43, 1077–1085 (2008).
pubmed: 18783731 pmcid: 2698668 doi: 10.1016/j.exger.2008.08.045
Ke, Y. et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic. Biol. Med. 116, 88–100 (2018).
pubmed: 29325896 doi: 10.1016/j.freeradbiomed.2018.01.007
Colombo, A. V. et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife 10, e59826 (2021).
Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276.e7 (2021).
pubmed: 34731656 doi: 10.1016/j.cmet.2021.10.010
Mezö, C. et al. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 8, 119 (2020).
pubmed: 32727612 pmcid: 7389451 doi: 10.1186/s40478-020-00988-5
Tessier, F. J. et al. Quantitative assessment of organ distribution of dietary protein-bound
pubmed: 27393741 doi: 10.1002/mnfr.201600140
Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).
pubmed: 19508720 pmcid: 2702274 doi: 10.1186/1471-2180-9-123
Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep. 8, 14184 (2018).
pubmed: 30242285 pmcid: 6155058 doi: 10.1038/s41598-018-32366-6
Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).
pubmed: 28407483 pmcid: 5392495 doi: 10.1016/j.chom.2017.03.002
Raghu, G., Jakhotia, S., Yadagiri Reddy, P., Kumar, P. A. & Bhanuprakash Reddy, G. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats. Food Funct. 7, 1574–1583 (2016).
pubmed: 26902315 doi: 10.1039/C5FO01372K
Kühn, F. et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight 5, e134049 (2020).
pmcid: 7213802 doi: 10.1172/jci.insight.134049
Singh, S. B., Carroll-Portillo, A., Coffman, C., Ritz, N. L. & Lin, H. C. Intestinal alkaline phosphatase exerts anti-inflammatory effects against lipopolysaccharide by inducing autophagy. Sci. Rep. 10, 3107 (2020).
pubmed: 32080230 pmcid: 7033233 doi: 10.1038/s41598-020-59474-6
Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).
pubmed: 26780511 pmcid: 4768346 doi: 10.1038/nn.4222
Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).
pubmed: 30471926 doi: 10.1016/j.immuni.2018.11.004
Koellhoffer, E. C., McCullough, L. D. & Ritzel, R. M. Old maids: aging and its impact on microglia function. Int. J. Mol. Sci. 18, 769 (2017).
pmcid: 5412353 doi: 10.3390/ijms18040769
Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: new roles for the synaptic stripper. Neuron 77, 10–18 (2013).
pubmed: 23312512 doi: 10.1016/j.neuron.2012.12.023
Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8, 2003–2014 (2013).
pubmed: 25206509 pmcid: 4145906
Enciu, A.-M., Gherghiceanu, M. & Popescu, B. O. Triggers and effectors of oxidative stress at blood–brain barrier level: relevance for brain ageing and neurodegeneration. Oxid. Med. Cell. Longev. 2013, 297512 (2013).
pubmed: 23533687 pmcid: 3606793 doi: 10.1155/2013/297512
Luceri, C. et al. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol. Rep. 5, 141–145 (2018).
pubmed: 29854585 doi: 10.1016/j.toxrep.2017.12.017
Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).
pubmed: 12628185 pmcid: 4480774 doi: 10.1016/S0092-8674(03)00154-5
Wenzel, T. J., Gates, E. J., Ranger, A. L. & Klegeris, A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 105, 103493 (2020).
pubmed: 32333962 doi: 10.1016/j.mcn.2020.103493
Basta, G. et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105, 816–822 (2002).
pubmed: 11854121 doi: 10.1161/hc0702.104183
Dyer, D. G. et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 91, 2463–2469 (1993).
pubmed: 8514858 pmcid: 443306 doi: 10.1172/JCI116481
Gironès, X. et al. N
pubmed: 15110389 doi: 10.1016/j.freeradbiomed.2004.02.006
Wong, A. et al. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920, 32–40 (2001).
pubmed: 11716809 doi: 10.1016/S0006-8993(01)02872-4
Xue, J. et al. Advanced glycation end product recognition by the receptor for AGEs. Structure 19, 722–732 (2011).
pubmed: 21565706 pmcid: 3150472 doi: 10.1016/j.str.2011.02.013
Spychala, M. S. et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol. 84, 23–36 (2018).
pubmed: 29733457 pmcid: 6119509 doi: 10.1002/ana.25250
Vaiserman, A. et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol. 20, 221 (2020).
pubmed: 32698765 pmcid: 7374892 doi: 10.1186/s12866-020-01903-7
Hu, S. et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food Funct. 10, 1736–1746 (2019).
pubmed: 30855043 doi: 10.1039/C8FO02364F
Long, T. et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 49, 568–578 (2017).
pubmed: 28263315 doi: 10.1038/ng.3809
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
pubmed: 29790989 pmcid: 6030816 doi: 10.1093/nar/gky379
Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).
pubmed: 30679343 doi: 10.1126/science.aat7554
Yilmaz, B. et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 25, 323–336 (2019).
pubmed: 30664783 doi: 10.1038/s41591-018-0308-z
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
pubmed: 20383131 pmcid: 3156573 doi: 10.1038/nmeth.f.303
McMurdie, P. J. & Holmes, S. Phyloseq: a Bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac. Symp. Biocomput. 235–246 (2012).
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 5, 1492 (2016).
pubmed: 27508062 pmcid: 4955027 doi: 10.12688/f1000research.8986.2
Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M. & Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 81, 6656–6667 (2009).
pubmed: 19624122 doi: 10.1021/ac901536h
Harris, D. C. Quantitative Chemical Analysis 6th edn (W H Freeman and Co., 2003).
Mossad, O., Yilmaz, B. & Blank, T. Dataset for gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N(6)-carboxymethyllysine. https://doi.org/10.6084/m9.figshare.15179775.v1 (2022).

Auteurs

Omar Mossad (O)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Bérénice Batut (B)

Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany.

Bahtiyar Yilmaz (B)

Maurice Müller Laboratories, Department for Biomedical Research, University Clinic of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland.

Nikolaos Dokalis (N)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Charlotte Mezö (C)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Elisa Nent (E)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Lara Susann Nabavi (LS)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Melanie Mayer (M)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Feres José Mocayar Maron (FJM)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Joerg M Buescher (JM)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Mercedes Gomez de Agüero (MG)

Maurice Müller Laboratories, Department for Biomedical Research, University Clinic of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland.

Antal Szalay (A)

Ultimate Medicine AG, Dübendorf, Switzerland.

Tim Lämmermann (T)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Andrew J Macpherson (AJ)

Maurice Müller Laboratories, Department for Biomedical Research, University Clinic of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland.

Stephanie C Ganal-Vonarburg (SC)

Maurice Müller Laboratories, Department for Biomedical Research, University Clinic of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland.

Rolf Backofen (R)

Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany.
Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.

Daniel Erny (D)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Berta Ottenstein Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Marco Prinz (M)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.

Thomas Blank (T)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. thomas.blank@uniklinik-freiburg.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH