Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
02
02
2021
accepted:
28
01
2022
pubmed:
5
3
2022
medline:
27
4
2022
entrez:
4
3
2022
Statut:
ppublish
Résumé
Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N
Identifiants
pubmed: 35241804
doi: 10.1038/s41593-022-01027-3
pii: 10.1038/s41593-022-01027-3
doi:
Substances chimiques
N(6)-carboxymethyllysine
70YDX3Z2O7
Lysine
K3Z4F929H6
Banques de données
figshare
['10.6084/m9.figshare.15179775.v1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
295-305Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages—from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).
pubmed: 33556248
pmcid: 8085109
doi: 10.1146/annurev-immunol-093019-110159
Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 158, 15–24 (2014).
pubmed: 24995975
doi: 10.1016/j.cell.2014.06.008
Streit, W. J., Sammons, N. W., Kuhns, A. J. & Sparks, D. L. Dystrophic microglia in the aging human brain. Glia 45, 208–212 (2004).
pubmed: 14730714
doi: 10.1002/glia.10319
Johnson, K. V. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).
pubmed: 29691482
doi: 10.1038/s41579-018-0014-3
Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).
pubmed: 26030851
pmcid: 5528863
doi: 10.1038/nn.4030
Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).
pubmed: 27338705
doi: 10.1126/science.aad8670
Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e516 (2018).
pubmed: 29275859
pmcid: 5786503
doi: 10.1016/j.cell.2017.11.042
Abdel-Haq, R., Schlachetzki, J. C. M., Glass, C. K. & Mazmanian, S. K. Microbiome–microglia connections via the gut–brain axis. J. Exp. Med. 216, 41–59 (2019).
pubmed: 30385457
pmcid: 6314531
doi: 10.1084/jem.20180794
Mossad, O. & Blank, T. Getting on in old age: how the gut microbiota interferes with brain innate immunity. Front. Cell. Neurosci. 15, 698126 (2021).
pubmed: 34295223
pmcid: 8290125
doi: 10.3389/fncel.2021.698126
Lakshminarayanan, B., Stanton, C., O’Toole, P. W. & Ross, R. P. Compositional dynamics of the human intestinal microbiota with aging: implications for health. J. Nutr. Health Aging 18, 773–786 (2014).
pubmed: 25389954
doi: 10.1007/s12603-014-0549-6
O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).
pubmed: 26785481
doi: 10.1126/science.aac8469
Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).
pubmed: 25520805
pmcid: 4269096
doi: 10.1186/s40168-014-0050-9
Boehme, M. et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat. Aging 1, 666–676 (2021).
doi: 10.1038/s43587-021-00093-9
Mossad, O. et al. Microbiota-dependent increase in δ-valerobetaine alters neuronal function and is responsible for age-related cognitive decline. Nat. Aging 1, 1127–1136 (2021).
doi: 10.1038/s43587-021-00141-4
Uchimura, Y. et al. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49, 545–559.e5 (2018).
pubmed: 30193848
pmcid: 6162337
doi: 10.1016/j.immuni.2018.08.004
Tremblay, M.-È., Zettel, M. L., Ison, J. R., Allen, P. D. & Majewska, A. K. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60, 541–558 (2012).
pubmed: 22223464
pmcid: 3276747
doi: 10.1002/glia.22287
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008
pmcid: 2631488
doi: 10.1186/1471-2105-9-559
Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).
pubmed: 22048312
pmcid: 3468323
doi: 10.1038/nature10600
Streit, W. J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 29, 506–510 (2006).
pubmed: 16859761
doi: 10.1016/j.tins.2006.07.001
Sun, J., Druhan, L. J. & Zweier, J. L. Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 494, 130–137 (2010).
pubmed: 19932078
doi: 10.1016/j.abb.2009.11.019
Zhao, K., Huang, Z., Lu, H., Zhou, J. & Wei, T. Induction of inducible nitric oxide synthase increases the production of reactive oxygen species in RAW264.7 macrophages. Biosci. Rep. 30, 233–241 (2010).
pubmed: 19673702
doi: 10.1042/BSR20090048
Stefanatos, R. & Sanz, A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 592, 743–758 (2018).
pubmed: 29106705
doi: 10.1002/1873-3468.12902
Gomes, A. P. et al. Declining NAD
pubmed: 24360282
pmcid: 4076149
doi: 10.1016/j.cell.2013.11.037
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838
pmcid: 3836174
doi: 10.1016/j.cell.2013.05.039
Shi, H. et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9, 223 (2021).
pubmed: 34758889
pmcid: 8582174
doi: 10.1186/s40168-021-01172-0
Thangthaeng, N., Sumien, N. & Forster, M. J. Dissociation of functional status from accrual of CML and RAGE in the aged mouse brain. Exp. Gerontol. 43, 1077–1085 (2008).
pubmed: 18783731
pmcid: 2698668
doi: 10.1016/j.exger.2008.08.045
Ke, Y. et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic. Biol. Med. 116, 88–100 (2018).
pubmed: 29325896
doi: 10.1016/j.freeradbiomed.2018.01.007
Colombo, A. V. et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife 10, e59826 (2021).
Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276.e7 (2021).
pubmed: 34731656
doi: 10.1016/j.cmet.2021.10.010
Mezö, C. et al. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 8, 119 (2020).
pubmed: 32727612
pmcid: 7389451
doi: 10.1186/s40478-020-00988-5
Tessier, F. J. et al. Quantitative assessment of organ distribution of dietary protein-bound
pubmed: 27393741
doi: 10.1002/mnfr.201600140
Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).
pubmed: 19508720
pmcid: 2702274
doi: 10.1186/1471-2180-9-123
Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep. 8, 14184 (2018).
pubmed: 30242285
pmcid: 6155058
doi: 10.1038/s41598-018-32366-6
Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).
pubmed: 28407483
pmcid: 5392495
doi: 10.1016/j.chom.2017.03.002
Raghu, G., Jakhotia, S., Yadagiri Reddy, P., Kumar, P. A. & Bhanuprakash Reddy, G. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats. Food Funct. 7, 1574–1583 (2016).
pubmed: 26902315
doi: 10.1039/C5FO01372K
Kühn, F. et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight 5, e134049 (2020).
pmcid: 7213802
doi: 10.1172/jci.insight.134049
Singh, S. B., Carroll-Portillo, A., Coffman, C., Ritz, N. L. & Lin, H. C. Intestinal alkaline phosphatase exerts anti-inflammatory effects against lipopolysaccharide by inducing autophagy. Sci. Rep. 10, 3107 (2020).
pubmed: 32080230
pmcid: 7033233
doi: 10.1038/s41598-020-59474-6
Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).
pubmed: 26780511
pmcid: 4768346
doi: 10.1038/nn.4222
Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).
pubmed: 30471926
doi: 10.1016/j.immuni.2018.11.004
Koellhoffer, E. C., McCullough, L. D. & Ritzel, R. M. Old maids: aging and its impact on microglia function. Int. J. Mol. Sci. 18, 769 (2017).
pmcid: 5412353
doi: 10.3390/ijms18040769
Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: new roles for the synaptic stripper. Neuron 77, 10–18 (2013).
pubmed: 23312512
doi: 10.1016/j.neuron.2012.12.023
Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8, 2003–2014 (2013).
pubmed: 25206509
pmcid: 4145906
Enciu, A.-M., Gherghiceanu, M. & Popescu, B. O. Triggers and effectors of oxidative stress at blood–brain barrier level: relevance for brain ageing and neurodegeneration. Oxid. Med. Cell. Longev. 2013, 297512 (2013).
pubmed: 23533687
pmcid: 3606793
doi: 10.1155/2013/297512
Luceri, C. et al. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol. Rep. 5, 141–145 (2018).
pubmed: 29854585
doi: 10.1016/j.toxrep.2017.12.017
Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).
pubmed: 12628185
pmcid: 4480774
doi: 10.1016/S0092-8674(03)00154-5
Wenzel, T. J., Gates, E. J., Ranger, A. L. & Klegeris, A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 105, 103493 (2020).
pubmed: 32333962
doi: 10.1016/j.mcn.2020.103493
Basta, G. et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105, 816–822 (2002).
pubmed: 11854121
doi: 10.1161/hc0702.104183
Dyer, D. G. et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 91, 2463–2469 (1993).
pubmed: 8514858
pmcid: 443306
doi: 10.1172/JCI116481
Gironès, X. et al. N
pubmed: 15110389
doi: 10.1016/j.freeradbiomed.2004.02.006
Wong, A. et al. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920, 32–40 (2001).
pubmed: 11716809
doi: 10.1016/S0006-8993(01)02872-4
Xue, J. et al. Advanced glycation end product recognition by the receptor for AGEs. Structure 19, 722–732 (2011).
pubmed: 21565706
pmcid: 3150472
doi: 10.1016/j.str.2011.02.013
Spychala, M. S. et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol. 84, 23–36 (2018).
pubmed: 29733457
pmcid: 6119509
doi: 10.1002/ana.25250
Vaiserman, A. et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol. 20, 221 (2020).
pubmed: 32698765
pmcid: 7374892
doi: 10.1186/s12866-020-01903-7
Hu, S. et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food Funct. 10, 1736–1746 (2019).
pubmed: 30855043
doi: 10.1039/C8FO02364F
Long, T. et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 49, 568–578 (2017).
pubmed: 28263315
doi: 10.1038/ng.3809
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
pubmed: 29790989
pmcid: 6030816
doi: 10.1093/nar/gky379
Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).
pubmed: 30679343
doi: 10.1126/science.aat7554
Yilmaz, B. et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 25, 323–336 (2019).
pubmed: 30664783
doi: 10.1038/s41591-018-0308-z
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
pubmed: 20383131
pmcid: 3156573
doi: 10.1038/nmeth.f.303
McMurdie, P. J. & Holmes, S. Phyloseq: a Bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac. Symp. Biocomput. 235–246 (2012).
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 5, 1492 (2016).
pubmed: 27508062
pmcid: 4955027
doi: 10.12688/f1000research.8986.2
Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M. & Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 81, 6656–6667 (2009).
pubmed: 19624122
doi: 10.1021/ac901536h
Harris, D. C. Quantitative Chemical Analysis 6th edn (W H Freeman and Co., 2003).
Mossad, O., Yilmaz, B. & Blank, T. Dataset for gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N(6)-carboxymethyllysine. https://doi.org/10.6084/m9.figshare.15179775.v1 (2022).