A novel antisymmetric 16-element transceiver dipole antenna array for parallel transmit cardiac MRI in pigs at 7 T.

None L-shaped dipole antenna UHF antisymmetric array cardiac MRI large animals parallel transmission (pTx) pigs

Journal

NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233

Informations de publication

Date de publication:
08 2022
Historique:
revised: 23 02 2022
received: 13 09 2021
accepted: 04 03 2022
pubmed: 13 3 2022
medline: 9 7 2022
entrez: 12 3 2022
Statut: ppublish

Résumé

To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for

Identifiants

pubmed: 35277907
doi: 10.1002/nbm.4726
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4726

Informations de copyright

© 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

Références

Van de Moortele PF, Akgun C, Adriany G, et al. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med. 2005;54(6):1503-1518. doi:10.1002/mrm.20708
Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PM. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imaging. 2001;19(2):219-226. doi:10.1016/S0730-725X(01)00300-9
Xin SX, Huang QH, Gao Y, Li BG, Xu YK, Chen WF. Fetus MRI at 7 T: B1 shimming strategy and SAR safety implications. IEEE Trans Microw Theory Tech. 2013;61(5):2146-2152. doi:10.1109/TMTT.2013.2247053
Ibrahim TS. Ultrahigh-field MRI whole-slice and localized RF field excitations using the same RF transmit array. IEEE Trans Med Imaging. 2006;25(10):1341-1347. doi:10.1109/TMI.2006.880666
Mao W, Smith MB, Collins CM. Exploring the limits of RF shimming for high-field MRI of the human head. Magn Reson Med. 2006;56(4):918-922. doi:10.1002/mrm.21013
Collins CM, Liu W, Swift BJ, Smith MB. Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies. Magn Reson Med. 2005;54(6):1327-1332. doi:10.1002/mrm.20729
Yoo H, Gopinath A, Vaughan JT. A Method to Localize RF B1 field in high-field magnetic resonance imaging systems. IEEE Trans Biomed Eng. 2012;59(12):3365-3371. doi:10.1109/TBME.2012.2208965
Elabyad IA, Herrmann T, Bruns C, Bernarding J, Erni D. RF shimming and improved SAR safety for MRI at 7 T with combined eight-element stepped impedance resonators and traveling-wave antenna. IEEE Trans Microw Theory Tech. 2018;66(1):540-555. doi:10.1109/TMTT.2017.2708707
Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de Moortele PF. Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 2008;59(2):396-409. doi:10.1002/mrm.21476
Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med. 2005;53(2):434-445. doi:10.1002/mrm.20321
Adriany G, Van de Moortele PF, Ritter J, et al. A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn Reson Med. 2008;59(3):590-597. doi:10.1002/mrm.21488
Aigner CS, Dietrich S, Schmitter S. Three-dimensional static and dynamic parallel transmission of the human heart at 7 T. NMR Biomed. 2021;34(3):e4450. doi:10.1002/nbm.4450
Dietrich S, Aigner CS, Kolbitsch C, et al. 3D Free-breathing multichannel absolute B1+ Mapping in the human body at 7T. Magn Reson Med. 2021;85(5):2552-2567. doi:10.1002/mrm.28602
Schar M, Ding H, Herzka DA. Improvement in B1+ homogeneity and average flip angle using dual-source parallel RF excitation for cardiac MRI in swine hearts. PLoS ONE. 2015;10(10):e0139859. doi:10.1371/journal.pone.0139859
Schmitter S, DelaBarre L, Wu X, et al. Cardiac imaging at 7 Tesla: single- and two-spoke radiofrequency pulse design with 16-channel parallel excitation. Magn Reson Med. 2013;70(5):1210-1219. doi:10.1002/mrm.24935
Steensma BR, Voogt IJ, Leiner T, et al. An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7 T. Magn Reson Mater Phys Biol Med. 2018;31(1):7-18. doi:10.1007/s10334-017-0665-5
Erturk MA, Raaijmakers AJ, Adriany G, Ugurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med. 2017;77(2):884-894. doi:10.1002/mrm.26153
Wu X, Schmitter S, Auerbach EJ, Ugurbil K, Van de Moortele PF. Mitigating transmit B 1 inhomogeneity in the liver at 7T using multi-spoke parallel transmit RF pulse design. Quant Imaging Med Surg. 2014;4(1):4-10. doi:10.3978/j.issn.2223-4292.2014.02.06
Vaughan JT, Snyder CJ, DelaBarre LJ, et al. Whole-body imaging at 7T: preliminary results. Magn Reson Med. 2009;61(1):244-248. doi:10.1002/mrm.21751
Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med. 2009;61(3):517-524. doi:10.1002/mrm.21895
Graessl A, Renz W, Hezel F, et al. Modular 32-channel transceiver coil array for cardiac MRI at 7.0T. Magn Reson Med. 2014;72(1):276-290. doi:10.1002/mrm.24903
Dieringer MA, Renz W, Lindel T, et al. Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson Imaging. 2011;33(3):736-741. doi:10.1002/jmri.22451
Winter L, Kellman P, Renz W, et al. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging. Eur Radiol. 2012;22(10):2211-2220. doi:10.1007/s00330-012-2487-1
Grassl A, Winter L, Thalhammer C, et al. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol. 2013;82(5):752-759. doi:10.1016/j.ejrad.2011.08.002
Thalhammer C, Renz W, Winter L, et al. Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application. J Magn Reson Imaging. 2012;36(4):847-857. doi:10.1002/jmri.23724
Versluis MJ, Tsekos N, Smith NB, Webb AG. Simple RF design for human functional and morphological cardiac imaging at 7 tesla. J Magn Reson. 2009;200(1):161-166. doi:10.1016/j.jmr.2009.06.014
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design and evaluation of a novel symmetric multichannel transmit/receive coil array for cardiac MRI in pigs at 7 T. IEEE Trans Microw Theory Tech. 2019;67(9):3928-3945. doi:10.1109/TMTT.2019.2913636
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. J Magn Reson. 2019;305:195-208. doi:10.1016/j.jmr.2019.07.004
Elabyad IA, Terekhov M, Lohr D, Stefanescu MR, Baltes S, Schreiber LM. A novel mono-surface antisymmetric 8Tx/16Rx coil array for parallel transmit cardiac MRI in pigs at 7T. Sci Rep. 2020;10(1):3117 doi:10.1038/s41598-020-59949-6
Elabyad IA, Terekhov M, Bille M, Schreiber LM. Design and implementation of two 16-element antisymmetric transceiver coil arrays for parallel transmission human cardiac MRI at 7 T. IEEE Trans Microw Theory Tech. 2021;69(7):3540-3557. doi:10.1109/TMTT.2021.3079422
Raaijmakers AJ, Ipek O, Klomp DW, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med. 2011;66(5):1488-1497. doi:10.1002/mrm.22886
Raaijmakers AJ, Italiaander M, Voogt IJ, et al. The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med. 2016;75(3):1366-1374. doi:10.1002/mrm.25596
Duan Q, Nair G, Gudino N, et al. A 7T spine array based on electric dipole transmitters. Magn Reson Med. 2015;74(4):1189-1197. doi:10.1002/mrm.25817
Oezerdem C, Winter L, Graessl A, et al. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magn Reson Med. 2016;75(6):2553-2565. doi:10.1002/mrm.25840
Raaijmakers AJ, Luijten PR, van den Berg CA. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils. NMR Biomed. 2016;29(9):1122-1130. doi:10.1002/nbm.3356
Ipek O, Raaijmakers AJ, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip. Phys Med Biol. 2012;57(2):343-355. doi:10.1088/0031-9155/57/2/343
Zivkovic I, de Castro CA, Webb A. Design and characterization of an eight-element passively fed meander-dipole array with improved specific absorption rate efficiency for 7 T body imaging. NMR Biomed. 2019;32(8):e4106. doi:10.1002/nbm.4106
Winter L, Ozerdem C, Hoffmann W, et al. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. PLoS ONE. 2013;8(4):e61661 doi:10.1371/journal.pone.0061661
Solomakha G, Leeuwen CV, Raaijmakers A, et al. The dual-mode dipole: a new array element for 7T body imaging with reduced SAR. Magn Reson Med. 2019;81(2):1459-1469. doi:10.1002/mrm.27485
Erturk MA, Wu X, Eryaman Y, et al. Toward imaging the body at 10.5 tesla. Magn Reson Med. 2017;77(1):434-443. doi:10.1002/mrm.26487
He X, Erturk MA, Grant A, et al. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med. 2020;84(1):289-303. doi:10.1002/mrm.28131
Steensma B, van de Moortele PF, Erturk A, et al. Introduction of the snake antenna array: geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med. 2020;84(5):2885-2896. doi:10.1002/mrm.28297
Chen G, Collins CM, Sodickson DK, Wiggins GC. A method to assess the loss of a dipole antenna for ultra-high-field MRI. Magn Reson Med. 2018;79(3):1773-1780. doi:10.1002/mrm.26777
Lee RF, Giaquinto RO, Hardy CJ. Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med. 2002;48(1):203-213. doi:10.1002/mrm.10186
Wu B, Zhang X, Qu P, Shen GX. Design of an inductively decoupled microstrip array at 9.4 T. J Magn Reson. 2006;182(1):126-132. doi:10.1016/j.jmr.2006.04.013
Zhang X, Webb A. Design of a capacitively decoupled transmit/receive NMR phased array for high field microscopy at 14.1T. J Magn Reson. 2004;170(1):149-155. doi:10.1016/j.jmr.2004.05.004
Wu B, Zhang X, Qu P, Shen GX. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T. Magn Reson Imaging. 2007;25(3):418-424. doi:10.1016/j.mri.2006.09.031
Maunder AM, Daneshmand M, Mousavi P, Fallone BG, De Zanche N. Stray capacitance between magnetic resonance imaging coil elements: models and application to array decoupling. IEEE Trans Microw Theory Tech. 2013;61(12):4667-4677. doi:10.1109/TMTT.2013.2288236
Clement JD, Gruetter R, Ipek O. A human cerebral and cerebellar 8-channel transceive RF dipole coil array at 7T. Magn Reson Med. 2019;81(2):1447-1458. doi:10.1002/mrm.27476
Yan X, Zhang X, Wei L, Xue R. Design and test of magnetic wall decoupling for dipole transmit/receive array for MR imaging at the ultrahigh field of 7T. Appl Magn Reson. 2015;46(1):59-66. doi:10.1007/s00723-014-0612-9
Mak ACK, Rowell CR, Murch RD. Isolation enhancement between two closely packed antennas. IEEE Trans Antennas Propag. 2008;56(11):3411-3419. doi:10.1109/TAP.2008.2005460
Lau BK, Andersen JB. Simple and efficient decoupling of compact arrays with parasitic scatterers. IEEE Trans Antennas Propag. 2012;60(2):464-472. doi:10.1109/TAP.2011.2173440
Elabyad IA, Terekhov M, Schreiber LM. A mono-surface 8Tx/16Rx antisymmetric dipole antenna array for parallel transmit cardiac MRI in pigs at 7T. Proc Int Soc Magn Reson Med. 2020;28:3117.
Elabyad IA, Terekhov M, Hock M, Lohr D, Schreiber LM. Development of a dedicated mono-surface 16-element transceiver dipole antenna array for parallel transmission cardiac MRI in pigs at 7 Tesla. Proc Int Soc Magn Reson Med. 2021;29:1577.
Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson. 2009;200(1):147-152. doi:10.1016/j.jmr.2009.06.005
Terekhov M, Elabyad IA, Kögler C, et al. Customized B1+-shaping using multi-channel transceiver array prototype for 7T cardiac MRI with central elements symmetry. Proc Int Soc Magn Reson Med. 2020;28:747.
Terekhov M, Elabyad IA, Stefanescu MR, Lohr D, Schreiber LM. Optimization of phase presets of multi-channel transceiver arrays for 7T cardiac MRI. Proc Int Soc Magn Reson Med. 2019;27:1605
Terekhov M, Elabyad IA, Schreiber LM. Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI. PLoS ONE. 2021;16(8):e0255341. doi:10.1371/journal.pone.0255341
Ohliger MA, Sodickson DK. An introduction to coil array design for parallel MRI. NMR Biomed. 2006;19(3):300-315. doi:10.1002/nbm.1046
Hock M, Terekhov M, Stefanescu MR, et al. B0 shimming of the human heart at 7T. Magn Reson Med. 2021;85(1):182-196. doi:10.1002/mrm.28423
Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid B1+ mapping. Magn Reson Med. 2006;55(6):1326-1333. doi:10.1002/mrm.20896
Reiter T, Lohr D, Hock M, et al. On the way to routine cardiac MRI at 7 Tesla-a pilot study on consecutive 84 examinations. PLoS ONE. 2021;16(7):e0252797. doi:10.1371/journal.pone.0252797

Auteurs

Ibrahim A Elabyad (IA)

Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.

Maxim Terekhov (M)

Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.

David Lohr (D)

Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.

Maya Bille (M)

Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.

Michael Hock (M)

Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.

Laura M Schreiber (LM)

Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH