Regulatory role of cysteines in (2R, 3R)-butanediol dehydrogenase BdhA of Bacillus velezensis strain GH1-13.

(2R, 3R)-butanediol dehydrogenase Bacillus velezensis Plant growth-promoting rhizobacterium site-directed mutagenesis zinc binding motif

Journal

Journal of microbiology (Seoul, Korea)
ISSN: 1976-3794
Titre abrégé: J Microbiol
Pays: Korea (South)
ID NLM: 9703165

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 17 01 2022
accepted: 03 02 2022
revised: 28 01 2022
pubmed: 15 3 2022
medline: 31 3 2022
entrez: 14 3 2022
Statut: ppublish

Résumé

Bacillus velezensis strain GH1-13 contains a (2R,3R)-butanediol dehydrogenase (R-BDH) BdhA which converts acetoin to R-BD reversibly, however, little is known about its regulatory cysteine and biological significance. We performed site-directed mutation of three cysteines in BdhA. The C37S mutant had no enzyme activity and the C34S and C177S mutants differed from each other and wild type (WT). After zinc affinity chromatography, 1 mM ZnCl

Identifiants

pubmed: 35286604
doi: 10.1007/s12275-022-2018-y
pii: 10.1007/s12275-022-2018-y
doi:

Substances chimiques

Butylene Glycols 0
Hydrogen Peroxide BBX060AN9V
Alcohol Oxidoreductases EC 1.1.-
butanediol dehydrogenase EC 1.1.1.4
Cysteine K848JZ4886

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

411-418

Informations de copyright

© 2022. The Microbiological Society of Korea.

Références

Aleti, G., Sessitsch, A., and Brader, G. 2015. Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput. Struct. Biotechnol. J. 13, 192–203.
pubmed: 25893081 pmcid: 4397504 doi: 10.1016/j.csbj.2015.03.003
Arnaouteli, S., Ferreira, A.S., Schor, M., Morris, R.J., Bromley, K.M., Jo, J., Cortez, K.L., Sukhodub, T., Prescott, A.R., Dietrich, L., et al. 2017. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc. Natl. Acad. Sci. USA 114, E6184–E6191.
pubmed: 28698374 pmcid: 5544334 doi: 10.1073/pnas.1707687114
Baker, P.J., Britton, K.L., Fisher, M., Esclapez, J., Pire, C., Bonete, M.J., Ferrer, J., and Rice, D.W. 2009. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily. Proc. Natl. Acad. Sci. USA 106, 779–784.
pubmed: 19131516 pmcid: 2630074 doi: 10.1073/pnas.0807529106
Bao, T., Zhang, X., Rao, Z., Zhao, X., Zhang, R., Yang, T., Xu, Z., and Yang, S. 2014. Efficient whole-cell biocatalyst for acetoin production with NAD
pubmed: 25036158 pmcid: 4103878 doi: 10.1371/journal.pone.0102951
Bednar, R.A. 1990. Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase. Biochemistry 29, 3684–3690.
pubmed: 2340265 doi: 10.1021/bi00467a014
Blessing, H., Kraus, S., Heindl, P., Bal, W., and Hartwig, A. 2004. Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur. J. Biochem. 271, 3190–3199.
pubmed: 15265038 doi: 10.1111/j.1432-1033.2004.04251.x
Celińska, E. and Grajek, W. 2009. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol. Adv. 27, 715–725.
pubmed: 19442714 doi: 10.1016/j.biotechadv.2009.05.002
Chan, Y.A., Podevels, A.M., Kevany, B.M., and Thomas, M.G. 2009. Biosynthesis of polyketide synthase extender units. Nat. Prod. Rep. 26, 90–114.
pubmed: 19374124 pmcid: 2766543 doi: 10.1039/B801658P
Choi, Y., Pham, H., Nguyen, M.P., Tran, L.V.H., Kim, J., Kim, S., Lee, C.W., Song, J., and Kim, Y.H. 2021. A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commum. Biol. 4, 582.
doi: 10.1038/s42003-021-02107-z
Collet, J.F., D’Souza, J.C., Jakob, U., and Bardwell, J.C.A. 2003. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J. Biol. Chem. 278, 45325–45332.
pubmed: 12952960 doi: 10.1074/jbc.M307818200
Deponte, M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 1830, 3217–3266.
pubmed: 23036594 doi: 10.1016/j.bbagen.2012.09.018
Dwyer, D.S. 2005. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects. BMC Chem. Biol. 5, 2.
pubmed: 16078995 pmcid: 1185526 doi: 10.1186/1472-6769-5-2
Elmahmoudy, M., Elfeky, N., Zhongji, P., Zhang, Y., and Bao, Y. 2021. Identification and characterization of a novel 2R,3R-Butanediol dehydrogenase from Bacillus sp. DL01. Electron. J. Biotechnol. 49, 56–63.
doi: 10.1016/j.ejbt.2020.11.002
Esteban-Torres, M., Alvarez, Y., Acebrón, I., de las Rivas, B., Muñoz, R., Kohring, G.W., Roa, A.M., Sobrino, M., and Mancheño, J.M. 2012. The crystal structure of galactitol-1-phosphate 5-dehydrogenase from Escherichia coli K12 provides insights into its anomalous behavior on IMAC processes. FEBS Lett. 586, 3127–3133.
pubmed: 22979983 doi: 10.1016/j.febslet.2012.07.073
Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., and Borriss, R. 2018. Bacillus velezensis FZB42 in 2018: the Grampositive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9, 2491.
pubmed: 30386322 pmcid: 6198173 doi: 10.3389/fmicb.2018.02491
Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. 2011. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434–450.
pubmed: 21391663 doi: 10.1021/tx100413v
Fomenko, D.E. and Gladyshev, V.N. 2003. Genomics perspective on disulfide bond formation. Antioxid. Redox Signal. 5, 397–402.
pubmed: 13678527 doi: 10.1089/152308603768295131
Fomenko, D.E., Marino, S.M., and Gladyshev, V.N. 2008. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases. Mol. Cells 26, 228–235.
pubmed: 18648218
Fu, J., Huo, G., Feng, L., Mao, Y., Wang, Z., Ma, H., Chen, T., and Zhao, X. 2016. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol. Biofuels 9, 90.
pubmed: 27099629 pmcid: 4837526 doi: 10.1186/s13068-016-0502-5
Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C. 2003. Metal and redox modulation of cysteine protein function. Chem. Biol. 10, 677–693.
pubmed: 12954327 doi: 10.1016/S1074-5521(03)00174-1
Gong, F.Q., Liu, Q.S., Tan, H.D., Li, T., Tan, C.U., and Yin, H. 2019. Cloning, expression and characterization of a novel (2R,3R)-2,3-butanediol dehydrogenase from Bacillus thuringiensis. Biocat. Agric. Biotechnol. 22, 101372.
doi: 10.1016/j.bcab.2019.101372
González, E., Fernández, M.R., Larroy, C., Solà, L., Pericàs, M.A., Parés, X., and Biosca, J.A. 2000. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J. Biol. Chem. 275, 35876–35885.
pubmed: 10938079 doi: 10.1074/jbc.M003035200
Gustafsson, C., Govindarajan, S., and Minshull, J. 2004. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353.
pubmed: 15245907 doi: 10.1016/j.tibtech.2004.04.006
Hanson, G. and Coller, J. 2018. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30.
pubmed: 29018283 doi: 10.1038/nrm.2017.91
Ji, X.J., Huang, H., Du, J., Zhu, J.G., Ren, L.J., Hu, N., and Li, S. 2009a. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour. Technol. 100, 3410–3414.
pubmed: 19297148 doi: 10.1016/j.biortech.2009.02.031
Ji, X.J., Huang, H., Du, J., Zhu, J.G., Ren, L.J., Li, S., and Nie, Z.K. 2009b. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour. Technol. 100, 5214–5218.
pubmed: 19527928 doi: 10.1016/j.biortech.2009.05.036
Kandasamy, V., Liu, J., Dantoft, S.H., Solem, C., and Jensen, P.R. 2016. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci. Rep. 6, 36769.
pubmed: 27857195 pmcid: 5114678 doi: 10.1038/srep36769
Kane, J.F. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500.
pubmed: 7579660 doi: 10.1016/0958-1669(95)80082-4
Kim, Y.H., Choi, Y., Oh, Y.Y., Ha, N.C., and Song, J. 2019. Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13. PLoS ONE 14, e0207968.
pubmed: 31022189 pmcid: 6483160 doi: 10.1371/journal.pone.0207968
Kim, Y.H., Song, W., Kim, J.S., Jiao, L., Lee, K., and Ha, N.C. 2015. Structural and mechanistic insights into the Pseudomonas fluorescens 2-nitrobenzoate 2-nitroreductase NbaA. Appl. Environ. Microbiol. 81, 5266–5277.
pubmed: 26025888 pmcid: 4495210 doi: 10.1128/AEM.01289-15
Kim, S.Y., Song, H., Sang, M.K., Weon, H.Y., and Song, J. 2017. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. J. Biotechnol. 259, 221–227.
pubmed: 28690133 doi: 10.1016/j.jbiotec.2017.06.1206
Kim, Y.H. and Yu, M.H. 2012. Overexpression of reactive cysteine-containing 2-nitrobenzoate nitroreductase (NbaA) and its mutants alters the sensitivity of Escherichia coli to reactive oxygen species by reprogramming a regulatory network of disulfide-bonded proteins. J. Proteome Res. 11, 3219–3230.
pubmed: 22564194 doi: 10.1021/pr300221b
Kolodkin-Gal, I., Elsholz, A.K.W., Muth, C., Girguis, P.R., Kolter, R., and Losick, R. 2013. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane embedded histidine kinase. Genes Dev. 27, 887–899.
pubmed: 23599347 pmcid: 3650226 doi: 10.1101/gad.215244.113
Li, W., Bottrill, A.R., Bibb, M.J., Buttner, M.J., Paget, M.S.B., and Kleanthous, C. 2003. The role of zinc in the disulphide stressregulated anti-sigma factor RsrA from Streptomyces coelicolor. J. Mol. Biol. 333, 461–472.
pubmed: 14529630 doi: 10.1016/j.jmb.2003.08.038
Nicholson, W.L. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 74, 6832–6838.
pubmed: 18820069 pmcid: 2583490 doi: 10.1128/AEM.00881-08
Okegbe, C., Price-Whelan, A., and Dietrich, L.E.P. 2014. Redox-driven regulation of microbial community morphogenesis. Curr. Opin. Microbiol. 18, 39–45.
pubmed: 24607644 doi: 10.1016/j.mib.2014.01.006
Ortiz de Orué Lucana, D., Wedderhoff, I., and Groves, M.R. 2011. ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J. Signal Transduct. 2012, 605905.
pubmed: 21977318 pmcid: 3184428
Pace, N.J. and Weerapana, E. 2014. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4, 419–434.
pubmed: 24970223 pmcid: 4101490 doi: 10.3390/biom4020419
Peng, G., Zhao, X., Li, Y., Wang, R., Huang, Y., and Qi, G. 2019. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol. Res. 227, 126297.
pubmed: 31421711 doi: 10.1016/j.micres.2019.126297
Poole, L.B. 2015. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80, 148–157.
pubmed: 25433365 doi: 10.1016/j.freeradbiomed.2014.11.013
Qiu, Y., Zhang, J., Li, L., Wen, Z., Nomura, C.T., Wu, S., and Chen, S. 2016. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol. Biofuels 9, 117.
pubmed: 27257436 pmcid: 4890260 doi: 10.1186/s13068-016-0522-1
Rabbee, M.F., Ali, M.S., Choi, J., Hwang, B.S., Jeong, S.C., and Baek, K.H. 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24, 1046.
pmcid: 6470737 doi: 10.3390/molecules24061046
Raedts, J., Siemerink, M.A., Levisson, M., van der Oost, J., and Kengen, S.W. 2014. Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Appl. Environ. Microbiol. 80, 2011–2020.
pubmed: 24441158 pmcid: 3957656 doi: 10.1128/AEM.04007-13
Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Paré, P.W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134, 1017–1026.
pubmed: 14976231 pmcid: 389924 doi: 10.1104/pp.103.026583
Sabra, W., Quitmann, H., Zeng, A.P., Dai, J.Y., and Xiu, Z.L. 2011. Microbial production of 2,3-butanediol. In Moo-Young, M. (ed.), Comprehensive Biotechnology, 2nd edn., pp. 87–97. Academic Press, Amsterdam, The Netherlands.
doi: 10.1016/B978-0-08-088504-9.00161-6
Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857.
pubmed: 15853875 doi: 10.1111/j.1365-2958.2005.04587.x
Song, C.W., Park, J.M., Chung, S.C., Lee, S.Y., and Song, H. 2019. Microbial production of 2,3-butanediol for industrial applications. J. Ind. Microbiol. Biotechnol. 46, 1583–1601.
pubmed: 31468234 doi: 10.1007/s10295-019-02231-0
Takeda, M., Muranushi, T., Inagaki, S., Nakao, T., Motomatsu, S., Suzuki, I., and Koizumi, J. 2011. Identification and characterization of a mycobacterial (2R,3R)-2,3-butanediol dehydrogenase. Biosci. Biotechnol. Biochem. 75, 2384–2389.
pubmed: 22146728 doi: 10.1271/bbb.110607
Ui, S., Hosaka, T., Watanabe, K., and Mimura, A. 1998. Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4. J. Ferment. Bioeng. 85, 79–83.
doi: 10.1016/S0922-338X(97)80358-3
Ui, S., Odagiri, M., Mimura, A., Kanai, H., Kobayashi, T., and Kudo, T. 1996. Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butanediol dehydrogenase gene. J. Ferment. Bioeng. 81, 386–389.
doi: 10.1016/0922-338X(96)85137-3
Ulrich, K. and Jakob, U. 2019. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 140, 14–27.
pubmed: 31201851 pmcid: 7041647 doi: 10.1016/j.freeradbiomed.2019.05.035
Wang, X.F., Feng, Y.B., and Ji, F.L. 2018. X-ray crystal structure of 2R,3R-butanediol dehydrogenase from Bacillus subtilis. doi: https://doi.org/10.2210/pdb6ie0/pdb . (released Sep 18, 2019)
Yang, T., Rao, Z., Zhang, X., Xu, M., Xu, Z., and Yang, S.T. 2013. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS ONE 8, e76149.
pubmed: 24098433 pmcid: 3788785 doi: 10.1371/journal.pone.0076149
Yang, T., Rao, Z., Zhang, X., Xu, M., Xu, Z., and Yang, S.T. 2015. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb. Cell Fact. 14, 122.
pubmed: 26296537 pmcid: 4546283 doi: 10.1186/s12934-015-0317-2
Yang, Z. and Zhang, Z. 2018. Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol. Biofuels 11, 35.
pubmed: 29449883 pmcid: 5808657 doi: 10.1186/s13068-018-1031-1
Ying, X. and Ma, K. 2011. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J. Bacteriol. 193, 3009–3019.
pubmed: 21515780 pmcid: 3133181 doi: 10.1128/JB.01433-10
Yu, M., Huang, M., Song, Q., Shao, J., and Ying, X. 2015. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010. Molecules 20, 7156–7173.
pubmed: 25903366 pmcid: 6272300 doi: 10.3390/molecules20047156
Yu, B., Sun, J., Bommareddy, R.R., Song, L., and Zeng, A.P. 2011. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl. Environ. Microbiol. 77, 4230–4233.
pubmed: 21531839 pmcid: 3131630 doi: 10.1128/AEM.02998-10
Zhang, X., Bao, T., Rao, Z., Yang, T., Xu, Z., Yang, S., and Li, H. 2014. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS ONE 9, e91187.
pubmed: 24608678 pmcid: 3946754 doi: 10.1371/journal.pone.0091187
Zhao, X., Zhang, X., Rao, Z., Bao, T., Li, X., Xu, M., Yang, T., and Yang, S. 2015. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5. Lett. Appl. Microbiol. 61, 573–579.
pubmed: 26393961 doi: 10.1111/lam.12495

Auteurs

Yunhee Choi (Y)

Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea.

Yong-Hak Kim (YH)

Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea. ykim@cu.ac.kr.

Articles similaires

Humans DNA Methylation Female Male Alcohol Oxidoreductases

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans
Plasmids Phylogeny Genome, Viral Bacillus Bacillus Phages

Discovery, characterization, and synthetic potential of two novel bacterial aryl-alcohol oxidases.

Paula Cinca-Fernando, Christian Ascaso-Alegre, Emma Sevilla et al.
1.00
Alcohol Oxidoreductases Catalytic Domain Crystallography, X-Ray Substrate Specificity Recombinant Proteins

Classifications MeSH