Regulatory role of cysteines in (2R, 3R)-butanediol dehydrogenase BdhA of Bacillus velezensis strain GH1-13.
(2R, 3R)-butanediol dehydrogenase
Bacillus velezensis
Plant growth-promoting rhizobacterium
site-directed mutagenesis
zinc binding motif
Journal
Journal of microbiology (Seoul, Korea)
ISSN: 1976-3794
Titre abrégé: J Microbiol
Pays: Korea (South)
ID NLM: 9703165
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
17
01
2022
accepted:
03
02
2022
revised:
28
01
2022
pubmed:
15
3
2022
medline:
31
3
2022
entrez:
14
3
2022
Statut:
ppublish
Résumé
Bacillus velezensis strain GH1-13 contains a (2R,3R)-butanediol dehydrogenase (R-BDH) BdhA which converts acetoin to R-BD reversibly, however, little is known about its regulatory cysteine and biological significance. We performed site-directed mutation of three cysteines in BdhA. The C37S mutant had no enzyme activity and the C34S and C177S mutants differed from each other and wild type (WT). After zinc affinity chromatography, 1 mM ZnCl
Identifiants
pubmed: 35286604
doi: 10.1007/s12275-022-2018-y
pii: 10.1007/s12275-022-2018-y
doi:
Substances chimiques
Butylene Glycols
0
Hydrogen Peroxide
BBX060AN9V
Alcohol Oxidoreductases
EC 1.1.-
butanediol dehydrogenase
EC 1.1.1.4
Cysteine
K848JZ4886
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
411-418Informations de copyright
© 2022. The Microbiological Society of Korea.
Références
Aleti, G., Sessitsch, A., and Brader, G. 2015. Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput. Struct. Biotechnol. J. 13, 192–203.
pubmed: 25893081
pmcid: 4397504
doi: 10.1016/j.csbj.2015.03.003
Arnaouteli, S., Ferreira, A.S., Schor, M., Morris, R.J., Bromley, K.M., Jo, J., Cortez, K.L., Sukhodub, T., Prescott, A.R., Dietrich, L., et al. 2017. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc. Natl. Acad. Sci. USA 114, E6184–E6191.
pubmed: 28698374
pmcid: 5544334
doi: 10.1073/pnas.1707687114
Baker, P.J., Britton, K.L., Fisher, M., Esclapez, J., Pire, C., Bonete, M.J., Ferrer, J., and Rice, D.W. 2009. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily. Proc. Natl. Acad. Sci. USA 106, 779–784.
pubmed: 19131516
pmcid: 2630074
doi: 10.1073/pnas.0807529106
Bao, T., Zhang, X., Rao, Z., Zhao, X., Zhang, R., Yang, T., Xu, Z., and Yang, S. 2014. Efficient whole-cell biocatalyst for acetoin production with NAD
pubmed: 25036158
pmcid: 4103878
doi: 10.1371/journal.pone.0102951
Bednar, R.A. 1990. Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase. Biochemistry 29, 3684–3690.
pubmed: 2340265
doi: 10.1021/bi00467a014
Blessing, H., Kraus, S., Heindl, P., Bal, W., and Hartwig, A. 2004. Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur. J. Biochem. 271, 3190–3199.
pubmed: 15265038
doi: 10.1111/j.1432-1033.2004.04251.x
Celińska, E. and Grajek, W. 2009. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol. Adv. 27, 715–725.
pubmed: 19442714
doi: 10.1016/j.biotechadv.2009.05.002
Chan, Y.A., Podevels, A.M., Kevany, B.M., and Thomas, M.G. 2009. Biosynthesis of polyketide synthase extender units. Nat. Prod. Rep. 26, 90–114.
pubmed: 19374124
pmcid: 2766543
doi: 10.1039/B801658P
Choi, Y., Pham, H., Nguyen, M.P., Tran, L.V.H., Kim, J., Kim, S., Lee, C.W., Song, J., and Kim, Y.H. 2021. A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commum. Biol. 4, 582.
doi: 10.1038/s42003-021-02107-z
Collet, J.F., D’Souza, J.C., Jakob, U., and Bardwell, J.C.A. 2003. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J. Biol. Chem. 278, 45325–45332.
pubmed: 12952960
doi: 10.1074/jbc.M307818200
Deponte, M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 1830, 3217–3266.
pubmed: 23036594
doi: 10.1016/j.bbagen.2012.09.018
Dwyer, D.S. 2005. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects. BMC Chem. Biol. 5, 2.
pubmed: 16078995
pmcid: 1185526
doi: 10.1186/1472-6769-5-2
Elmahmoudy, M., Elfeky, N., Zhongji, P., Zhang, Y., and Bao, Y. 2021. Identification and characterization of a novel 2R,3R-Butanediol dehydrogenase from Bacillus sp. DL01. Electron. J. Biotechnol. 49, 56–63.
doi: 10.1016/j.ejbt.2020.11.002
Esteban-Torres, M., Alvarez, Y., Acebrón, I., de las Rivas, B., Muñoz, R., Kohring, G.W., Roa, A.M., Sobrino, M., and Mancheño, J.M. 2012. The crystal structure of galactitol-1-phosphate 5-dehydrogenase from Escherichia coli K12 provides insights into its anomalous behavior on IMAC processes. FEBS Lett. 586, 3127–3133.
pubmed: 22979983
doi: 10.1016/j.febslet.2012.07.073
Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., and Borriss, R. 2018. Bacillus velezensis FZB42 in 2018: the Grampositive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9, 2491.
pubmed: 30386322
pmcid: 6198173
doi: 10.3389/fmicb.2018.02491
Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. 2011. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434–450.
pubmed: 21391663
doi: 10.1021/tx100413v
Fomenko, D.E. and Gladyshev, V.N. 2003. Genomics perspective on disulfide bond formation. Antioxid. Redox Signal. 5, 397–402.
pubmed: 13678527
doi: 10.1089/152308603768295131
Fomenko, D.E., Marino, S.M., and Gladyshev, V.N. 2008. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases. Mol. Cells 26, 228–235.
pubmed: 18648218
Fu, J., Huo, G., Feng, L., Mao, Y., Wang, Z., Ma, H., Chen, T., and Zhao, X. 2016. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol. Biofuels 9, 90.
pubmed: 27099629
pmcid: 4837526
doi: 10.1186/s13068-016-0502-5
Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C. 2003. Metal and redox modulation of cysteine protein function. Chem. Biol. 10, 677–693.
pubmed: 12954327
doi: 10.1016/S1074-5521(03)00174-1
Gong, F.Q., Liu, Q.S., Tan, H.D., Li, T., Tan, C.U., and Yin, H. 2019. Cloning, expression and characterization of a novel (2R,3R)-2,3-butanediol dehydrogenase from Bacillus thuringiensis. Biocat. Agric. Biotechnol. 22, 101372.
doi: 10.1016/j.bcab.2019.101372
González, E., Fernández, M.R., Larroy, C., Solà, L., Pericàs, M.A., Parés, X., and Biosca, J.A. 2000. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J. Biol. Chem. 275, 35876–35885.
pubmed: 10938079
doi: 10.1074/jbc.M003035200
Gustafsson, C., Govindarajan, S., and Minshull, J. 2004. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353.
pubmed: 15245907
doi: 10.1016/j.tibtech.2004.04.006
Hanson, G. and Coller, J. 2018. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30.
pubmed: 29018283
doi: 10.1038/nrm.2017.91
Ji, X.J., Huang, H., Du, J., Zhu, J.G., Ren, L.J., Hu, N., and Li, S. 2009a. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour. Technol. 100, 3410–3414.
pubmed: 19297148
doi: 10.1016/j.biortech.2009.02.031
Ji, X.J., Huang, H., Du, J., Zhu, J.G., Ren, L.J., Li, S., and Nie, Z.K. 2009b. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour. Technol. 100, 5214–5218.
pubmed: 19527928
doi: 10.1016/j.biortech.2009.05.036
Kandasamy, V., Liu, J., Dantoft, S.H., Solem, C., and Jensen, P.R. 2016. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci. Rep. 6, 36769.
pubmed: 27857195
pmcid: 5114678
doi: 10.1038/srep36769
Kane, J.F. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500.
pubmed: 7579660
doi: 10.1016/0958-1669(95)80082-4
Kim, Y.H., Choi, Y., Oh, Y.Y., Ha, N.C., and Song, J. 2019. Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13. PLoS ONE 14, e0207968.
pubmed: 31022189
pmcid: 6483160
doi: 10.1371/journal.pone.0207968
Kim, Y.H., Song, W., Kim, J.S., Jiao, L., Lee, K., and Ha, N.C. 2015. Structural and mechanistic insights into the Pseudomonas fluorescens 2-nitrobenzoate 2-nitroreductase NbaA. Appl. Environ. Microbiol. 81, 5266–5277.
pubmed: 26025888
pmcid: 4495210
doi: 10.1128/AEM.01289-15
Kim, S.Y., Song, H., Sang, M.K., Weon, H.Y., and Song, J. 2017. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. J. Biotechnol. 259, 221–227.
pubmed: 28690133
doi: 10.1016/j.jbiotec.2017.06.1206
Kim, Y.H. and Yu, M.H. 2012. Overexpression of reactive cysteine-containing 2-nitrobenzoate nitroreductase (NbaA) and its mutants alters the sensitivity of Escherichia coli to reactive oxygen species by reprogramming a regulatory network of disulfide-bonded proteins. J. Proteome Res. 11, 3219–3230.
pubmed: 22564194
doi: 10.1021/pr300221b
Kolodkin-Gal, I., Elsholz, A.K.W., Muth, C., Girguis, P.R., Kolter, R., and Losick, R. 2013. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane embedded histidine kinase. Genes Dev. 27, 887–899.
pubmed: 23599347
pmcid: 3650226
doi: 10.1101/gad.215244.113
Li, W., Bottrill, A.R., Bibb, M.J., Buttner, M.J., Paget, M.S.B., and Kleanthous, C. 2003. The role of zinc in the disulphide stressregulated anti-sigma factor RsrA from Streptomyces coelicolor. J. Mol. Biol. 333, 461–472.
pubmed: 14529630
doi: 10.1016/j.jmb.2003.08.038
Nicholson, W.L. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 74, 6832–6838.
pubmed: 18820069
pmcid: 2583490
doi: 10.1128/AEM.00881-08
Okegbe, C., Price-Whelan, A., and Dietrich, L.E.P. 2014. Redox-driven regulation of microbial community morphogenesis. Curr. Opin. Microbiol. 18, 39–45.
pubmed: 24607644
doi: 10.1016/j.mib.2014.01.006
Ortiz de Orué Lucana, D., Wedderhoff, I., and Groves, M.R. 2011. ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J. Signal Transduct. 2012, 605905.
pubmed: 21977318
pmcid: 3184428
Pace, N.J. and Weerapana, E. 2014. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4, 419–434.
pubmed: 24970223
pmcid: 4101490
doi: 10.3390/biom4020419
Peng, G., Zhao, X., Li, Y., Wang, R., Huang, Y., and Qi, G. 2019. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol. Res. 227, 126297.
pubmed: 31421711
doi: 10.1016/j.micres.2019.126297
Poole, L.B. 2015. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80, 148–157.
pubmed: 25433365
doi: 10.1016/j.freeradbiomed.2014.11.013
Qiu, Y., Zhang, J., Li, L., Wen, Z., Nomura, C.T., Wu, S., and Chen, S. 2016. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol. Biofuels 9, 117.
pubmed: 27257436
pmcid: 4890260
doi: 10.1186/s13068-016-0522-1
Rabbee, M.F., Ali, M.S., Choi, J., Hwang, B.S., Jeong, S.C., and Baek, K.H. 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24, 1046.
pmcid: 6470737
doi: 10.3390/molecules24061046
Raedts, J., Siemerink, M.A., Levisson, M., van der Oost, J., and Kengen, S.W. 2014. Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Appl. Environ. Microbiol. 80, 2011–2020.
pubmed: 24441158
pmcid: 3957656
doi: 10.1128/AEM.04007-13
Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Paré, P.W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134, 1017–1026.
pubmed: 14976231
pmcid: 389924
doi: 10.1104/pp.103.026583
Sabra, W., Quitmann, H., Zeng, A.P., Dai, J.Y., and Xiu, Z.L. 2011. Microbial production of 2,3-butanediol. In Moo-Young, M. (ed.), Comprehensive Biotechnology, 2nd edn., pp. 87–97. Academic Press, Amsterdam, The Netherlands.
doi: 10.1016/B978-0-08-088504-9.00161-6
Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857.
pubmed: 15853875
doi: 10.1111/j.1365-2958.2005.04587.x
Song, C.W., Park, J.M., Chung, S.C., Lee, S.Y., and Song, H. 2019. Microbial production of 2,3-butanediol for industrial applications. J. Ind. Microbiol. Biotechnol. 46, 1583–1601.
pubmed: 31468234
doi: 10.1007/s10295-019-02231-0
Takeda, M., Muranushi, T., Inagaki, S., Nakao, T., Motomatsu, S., Suzuki, I., and Koizumi, J. 2011. Identification and characterization of a mycobacterial (2R,3R)-2,3-butanediol dehydrogenase. Biosci. Biotechnol. Biochem. 75, 2384–2389.
pubmed: 22146728
doi: 10.1271/bbb.110607
Ui, S., Hosaka, T., Watanabe, K., and Mimura, A. 1998. Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4. J. Ferment. Bioeng. 85, 79–83.
doi: 10.1016/S0922-338X(97)80358-3
Ui, S., Odagiri, M., Mimura, A., Kanai, H., Kobayashi, T., and Kudo, T. 1996. Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butanediol dehydrogenase gene. J. Ferment. Bioeng. 81, 386–389.
doi: 10.1016/0922-338X(96)85137-3
Ulrich, K. and Jakob, U. 2019. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 140, 14–27.
pubmed: 31201851
pmcid: 7041647
doi: 10.1016/j.freeradbiomed.2019.05.035
Wang, X.F., Feng, Y.B., and Ji, F.L. 2018. X-ray crystal structure of 2R,3R-butanediol dehydrogenase from Bacillus subtilis. doi: https://doi.org/10.2210/pdb6ie0/pdb . (released Sep 18, 2019)
Yang, T., Rao, Z., Zhang, X., Xu, M., Xu, Z., and Yang, S.T. 2013. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS ONE 8, e76149.
pubmed: 24098433
pmcid: 3788785
doi: 10.1371/journal.pone.0076149
Yang, T., Rao, Z., Zhang, X., Xu, M., Xu, Z., and Yang, S.T. 2015. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb. Cell Fact. 14, 122.
pubmed: 26296537
pmcid: 4546283
doi: 10.1186/s12934-015-0317-2
Yang, Z. and Zhang, Z. 2018. Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol. Biofuels 11, 35.
pubmed: 29449883
pmcid: 5808657
doi: 10.1186/s13068-018-1031-1
Ying, X. and Ma, K. 2011. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J. Bacteriol. 193, 3009–3019.
pubmed: 21515780
pmcid: 3133181
doi: 10.1128/JB.01433-10
Yu, M., Huang, M., Song, Q., Shao, J., and Ying, X. 2015. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010. Molecules 20, 7156–7173.
pubmed: 25903366
pmcid: 6272300
doi: 10.3390/molecules20047156
Yu, B., Sun, J., Bommareddy, R.R., Song, L., and Zeng, A.P. 2011. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl. Environ. Microbiol. 77, 4230–4233.
pubmed: 21531839
pmcid: 3131630
doi: 10.1128/AEM.02998-10
Zhang, X., Bao, T., Rao, Z., Yang, T., Xu, Z., Yang, S., and Li, H. 2014. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS ONE 9, e91187.
pubmed: 24608678
pmcid: 3946754
doi: 10.1371/journal.pone.0091187
Zhao, X., Zhang, X., Rao, Z., Bao, T., Li, X., Xu, M., Yang, T., and Yang, S. 2015. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5. Lett. Appl. Microbiol. 61, 573–579.
pubmed: 26393961
doi: 10.1111/lam.12495