Aminoacid functionalised magnetite nanoparticles Fe
Magnetite Nanoparticles
/ chemistry
Tryptophan
/ chemistry
Biocompatible Materials
/ chemistry
Microbial Sensitivity Tests
Humans
Anti-Infective Agents
/ chemistry
Candida albicans
/ drug effects
Amino Acids
/ chemistry
Escherichia coli
/ drug effects
Cysteine
/ chemistry
Proline
/ chemistry
Serine
/ chemistry
Staphylococcus aureus
/ drug effects
Thermogravimetry
Pseudomonas aeruginosa
/ drug effects
Amino acids
Antimicrobial agents
Biomedical applications
Drug delivery systems
Magnetite nanoparticles
Photocatalysis
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
23
04
2024
accepted:
15
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Magnetic nanoparticles (MNPs) are of great interest for their wide applications in biomedical applications, such as bioimaging, antitumoral therapies, regenerative medicine, and drug delivery. The work aimed to obtain biocompatible magnetite nanoparticles coated with amino acids of the general formula Fe
Identifiants
pubmed: 39482399
doi: 10.1038/s41598-024-76552-1
pii: 10.1038/s41598-024-76552-1
doi:
Substances chimiques
Magnetite Nanoparticles
0
Tryptophan
8DUH1N11BX
Biocompatible Materials
0
Anti-Infective Agents
0
Amino Acids
0
Cysteine
K848JZ4886
Proline
9DLQ4CIU6V
Serine
452VLY9402
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26228Subventions
Organisme : Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
ID : Magnetic smart drug delivery systems for theranostic using a personalized approach (SmartACT)" project PN-III-P1-1.1-TE_2021-1342, contract TE 96 din 17/05/2022.
Informations de copyright
© 2024. The Author(s).
Références
Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 (2017).
doi: 10.1016/j.arabjc.2017.05.011
Kandasamy, G. & Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496(2), 191–218. https://doi.org/10.1016/j.ijpharm.2015.10.058 (2015).
doi: 10.1016/j.ijpharm.2015.10.058
pubmed: 26520409
Sukumaran, S., Neelakandan, M., Shaji, N., Prasad, P. & Yadunath, V. Magnetic nanoparticles: Synthesis and potential biological applications. JSM Nanotechnol. Nanomed. 6(2), 1068 (2018).
Chircov, C., Stefan, R. E., Dolete, G., Andrei, A., Holban, A. M., Oprea, O. C., Vasile, B. S., Neacsu, I. A., Tihauan, B. Dextran-coated iron oxide nanoparticles loaded with curcumin for antimicrobial therapies. Pharmaceutics 14(5). https://doi.org/10.3390/pharmaceutics14051057 (2022).
Ilie, C. I. et al. Magnetic platforms based on magnetic and polyphenols with antimicrobial activity. U.P.B. Sci. Bull. Ser. B 84(4), 45–58 (2022).
Radulescu, M. et al. Advances in drug delivery systems, from 0 to 3D superstructures. Curr. Drug Targets 19(9), 393–405. https://doi.org/10.2174/1389450117666160401122926 (2018).
doi: 10.2174/1389450117666160401122926
pubmed: 27033196
Chircov, C. et al. Iron oxide-silica core–shell nanoparticles functionalized with essential oils for antimicrobial therapies. Antibiotics-Basel 10(9), 1138. https://doi.org/10.3390/antibiotics10091138 (2021).
doi: 10.3390/antibiotics10091138
pubmed: 34572720
pmcid: 8467872
Petrov, K. D. & Chubarov, A. S. Magnetite nanoparticles for biomedical applications. Encyclopedia 2(4), 1811–1828. https://doi.org/10.3390/encyclopedia2040125 (2022).
doi: 10.3390/encyclopedia2040125
Ganapathe, L. S., Mohamed, M. A., Mohamad Yunus, R. & Berhanuddin, D. D. Magnetite (Fe
doi: 10.3390/magnetochemistry6040068
Shabatina, T. I., Vernaya, O. I., Shabatin, V. P. & Melnikov, M. Y. Magnetic nanoparticles for biomedical purposes: Modern trends and prospects. Magnetochemistry 6(3), 30. https://doi.org/10.3390/magnetochemistry6030030 (2020).
doi: 10.3390/magnetochemistry6030030
Tran, N. & Webster, T. J. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem. 20(40), 8760–8767. https://doi.org/10.1039/C0JM00994F (2010).
doi: 10.1039/C0JM00994F
Tapeinos, C. Magnetic nanoparticles and their bioapplications. Chapter. In Smart Nanoparticles for Biomedicine 131–142 (2018).
Mittal, A., Roy, I. & Gandhi, S. Magnetic nanoparticles: An overview for biomedical applications. Magnetochemistry 8(9), 107. https://doi.org/10.3390/magnetochemistry8090107 (2022).
doi: 10.3390/magnetochemistry8090107
Movileanu, C. et al. Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor. Int. J. Pharm. 625, 122064. https://doi.org/10.1016/j.ijpharm.2022.122064 (2022).
doi: 10.1016/j.ijpharm.2022.122064
pubmed: 35952802
Tronc, E., Jolivet, J. P. & Massart, R. Defect spinel structure in iron oxide colloids. Mater. Res. Bull. 17, 1365–1369. https://doi.org/10.1016/0025-5408(82)90220-3 (1982).
doi: 10.1016/0025-5408(82)90220-3
Cornell, R. M., Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses 2nd edn. https://doi.org/10.1002/3527602097 (Wiley, 2003).
Nocera, T. M., Chen, J., Murray, C. B. & Agarwal, G. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles. Nanotechnology 23, 495704. https://doi.org/10.1088/0957-4484/23/49/495704 (2012).
doi: 10.1088/0957-4484/23/49/495704
pubmed: 23149438
Yavuz, C. T. et al. Low-field magnetic separation of monodisperse Fe
doi: 10.1126/science.1131475
pubmed: 17095696
Jun, Y. W. et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733. https://doi.org/10.1021/ja0422155 (2005).
doi: 10.1021/ja0422155
pubmed: 15839639
Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 1, 482–501. https://doi.org/10.1002/smll.200500006 (2005).
doi: 10.1002/smll.200500006
pubmed: 17193474
Ozel, F. & Kockar, H. Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: Reaction time and temperature. J. Magn. Magn. Mater. 373, 213–216. https://doi.org/10.1016/j.jmmm.2014.02.072 (2015).
doi: 10.1016/j.jmmm.2014.02.072
Leslie-Pelecky, D. L. & Rieke, R. D. Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783. https://doi.org/10.1021/cm960077f (1996).
doi: 10.1021/cm960077f
Katz, E. Magnetic Nanoparticles. Magnetochemistry 6(1), 6. https://doi.org/10.3390/magnetochemistry6010006 (2020).
doi: 10.3390/magnetochemistry6010006
Tang, C. et al. Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnol. 18(1), 62. https://doi.org/10.1186/s12951-020-00613-6 (2020).
doi: 10.1186/s12951-020-00613-6
Krishnan, S. & Goud, Y. Magnetic particle bioconjugates: A versatile sensor approach. Magnetochemistry 5(4), 64. https://doi.org/10.3390/magnetochemistry5040064 (2019).
doi: 10.3390/magnetochemistry5040064
Hepel, M. Magnetic nanoparticles for nanomedicine. Magnetochemistry 6(1), 3. https://doi.org/10.3390/magnetochemistry6010003 (2020).
doi: 10.3390/magnetochemistry6010003
Anik, M. I. et al. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select 2(6), 1146–1186. https://doi.org/10.1002/nano.202000162 (2021).
doi: 10.1002/nano.202000162
Hosu, O., Tertis, M. & Cristea, C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry 5(4), 55. https://doi.org/10.3390/magnetochemistry5040055 (2019).
doi: 10.3390/magnetochemistry5040055
Ulbrich, K. et al. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589 (2016).
doi: 10.1021/acs.chemrev.5b00589
pubmed: 27109701
Karimzadeh, I. et al. Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J. Clust. Sci 28(3), 1259–1271. https://doi.org/10.1007/s10876-016-1139-z (2016).
doi: 10.1007/s10876-016-1139-z
Ghorbani, M., Hamishehkar, H., Arsalani, N. & Entezami, A. A. A novel dual-responsive core-crosslinked magnetic-gold nanogel for triggered drug release. Mater. Sci. Eng. C 68, 436–444. https://doi.org/10.1016/j.msec.2016.06.007 (2016).
doi: 10.1016/j.msec.2016.06.007
Guo, X., Mao, F., Wang, W., Yang, Y. & Bai, Z. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: Synthesis and toxicity assessment in vitro. ACS Appl. Mater. Interfaces 7(27), 14983–14991. https://doi.org/10.1021/acsami.5b03873 (2015).
doi: 10.1021/acsami.5b03873
pubmed: 26083720
Ficai, D., Oprea, O., Ficai, A. & Holban, A. M. Metal oxide nanoparticles: Potential uses in biomedical applications. Curr. Proteom. 11(2), 139–149. https://doi.org/10.2174/157016461102140917122838 (2014).
doi: 10.2174/157016461102140917122838
Ardelean, L. I. et al. Development of stabilized magnetite nanoparticles for medical applications. J. Nanomater. https://doi.org/10.1155/2017/6514659 (2017).
doi: 10.1155/2017/6514659
Ardelean, L. I., Ficai, D., Ficai, A., Nechifor, G., Dragu, D., Bleotu, C. Synthesis and characterization of new magnetite nanoparticles by using the different amino acids such as stabilizing agents. U.P.B. Sci. Bull. Ser. B 80(1) (2018)
Spoială, A. et al. Magnetite-silica core/shell nanostructures: From surface functionalization towards biomedical applications—A review. Appl. Sci. 11, 11075 (2021).
doi: 10.3390/app112211075
García, G. G., Caro, C., Fernández-Álvarez, F., María García-Martín, L., Arias, J. L. Multi-stimuli-responsive chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles as theranostic platforms for combined tumor magnetic resonance imaging and chemotherapy. Nanomed. Nanotechnol. Biol. Med. 52 (2023).
Sundar, S., Mariappan, R. & Piraman, S. Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technol. 266, 321–328. https://doi.org/10.1016/j.powtec.2014.06.033 (2014).
doi: 10.1016/j.powtec.2014.06.033
Salunkhe, A. B., Khot, V. M., Ruso, J. M. & Patil, S. I. Synthesis and magnetostructural studies of amine functionalized superparamagnetic iron oxide nanoparticles. RSC Adv. 5(24), 18420–18428. https://doi.org/10.1039/C5RA00049A (2015).
doi: 10.1039/C5RA00049A
Marinescu, G. et al. Synthesis of magnetite nanoparticles in the presence of aminoacids. J. Nanopart. Res. 8(6), 1045–1051. https://doi.org/10.1007/s11051-006-9134-1 (2006).
doi: 10.1007/s11051-006-9134-1
Kocharova, N., Aarilato, T., Leiro, J., Kankare, J. & Lukkari, J. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Langmuir 23, 3363–3371. https://doi.org/10.1021/la0631522 (2007).
doi: 10.1021/la0631522
pubmed: 17291020
C.P.S.f.A.S. Testing, CLSI supplemenent M100 (Clinical and Laboratory Standards Institute, 2021).
Spoiala, A. et al. Zinc oxide nanoparticles for water purification. Materials 14(16), 4747–4763. https://doi.org/10.3390/ma14164747 (2021).
doi: 10.3390/ma14164747
pubmed: 34443269
pmcid: 8397993
Chircov, C. et al. Synthesis of magnetite nanoparticles through a lab-on-chip device. Materials 14(19), 5906. https://doi.org/10.3390/ma14195906 (2021).
doi: 10.3390/ma14195906
pubmed: 34640303
pmcid: 8510126
Hudita, A. et al. MAPLE processed nanostructures for antimicrobial coatings. Int. J Mol. Sci. 23(23), 15355. https://doi.org/10.3390/ijms232315355 (2022).
doi: 10.3390/ijms232315355
pubmed: 36499682
pmcid: 9738358
Boopathi, K. N., Manivel, A. & Prabakaran, N. Spectral investigation of aminoacid modified DNA self-assembled magnetite Fe
Motelica, L. et al. Influence of the alcohols on the ZnO synthesis and its properties: The photocatalytic and antimicrobial activities. Pharmaceutics 14(12), 2842. https://doi.org/10.3390/pharmaceutics14122842 (2022).
doi: 10.3390/pharmaceutics14122842
pubmed: 36559334
pmcid: 9783502
Zhang, X.-F. et al. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534. https://doi.org/10.3390/ijms17091534 (2016).
doi: 10.3390/ijms17091534
pubmed: 27649147
pmcid: 5037809
Aliofkharzaei, M. Handbook of Nanoparticles (Springer, 2015).
doi: 10.1007/978-3-319-13188-7
Puiu, R. A. et al. Anti-cancer nanopowders and MAPLE-fabricated thin films based on SPIONs surface modified with paclitaxel loaded beta-cyclodextrin. Pharmaceutics 13(9), 1356. https://doi.org/10.3390/pharmaceutics13091356 (2021).
doi: 10.3390/pharmaceutics13091356
pubmed: 34575432
pmcid: 8468465
Gherasim, O. et al. MAPLE coatings embedded with essential oil-conjugated magnetite for anti-biofilm applications. Materials 14(7), 1612. https://doi.org/10.3390/ma14071612 (2021).
doi: 10.3390/ma14071612
pubmed: 33806228
pmcid: 8036921
Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry-reconsidering steric effects. Angew. Chem. Int. Ed. Engl. 54(42), 12274–12296. https://doi.org/10.1002/anie.201503476 (2015).
doi: 10.1002/anie.201503476
pubmed: 26262562
Roberts, J. L., Morrison, M. M. & Sawyer, D. T. Base-induced generation of superoxide ion and hydroxyl radical from hydrogen peroxide. J. Am. Chem. Soc. 100, 329–330. https://doi.org/10.1021/ja00469a079 (1978).
doi: 10.1021/ja00469a079
Haynes, W. M. (ed). CRC Handbook of Chemistry and Physics 95 edn, 5–92 (CRC Press LLC, 2014–2015). https://doi.org/10.1201/b17118 .
Bhattacharyya, A., Stavitski, E., Dvorak, J. & Martinez, C. E. Redox interactions between Fe and cysteine: Spectroscopic studies and multiplet calculations. Geochim. Cosmochim. Acta 122, 89–100. https://doi.org/10.1016/j.gca.2013.08.012 (2013).
doi: 10.1016/j.gca.2013.08.012
Amirbahman, A., Sigg, L. & von Gunten, U. Reductive dissolution of Fe(III) (Hyrd)oxides by cysteine: Kinetics and Mechanism. J. Colloid Interface Sci. 194, 194–206. https://doi.org/10.1006/jcis.1997.5116 (1997).
doi: 10.1006/jcis.1997.5116
pubmed: 9367598
Zhao, R., Lind, J., Merbnyi, G. & Eriksen, T. E. Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from a-amino C–H bonds. J. Am. Chem. Soc. 116, 12010–12015. https://doi.org/10.1021/ja00105a048 (1994).
doi: 10.1021/ja00105a048
Zhao, Z., Poojary, M. M., Skibsted, L. H. & Lund, M. N. Cleavage of disulfide bonds in cystine by UV-B illumination mediated by tryptophan or tyrosine as photosensitizers. J. Agric. Food Chem. 68(25), 6900–6909. https://doi.org/10.1021/acs.jafc.0c01760 (2020).
doi: 10.1021/acs.jafc.0c01760
pubmed: 32437144
Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18(4), 1637–1755. https://doi.org/10.1063/1.555843 (1989).
doi: 10.1063/1.555843
Arias, L. S. et al. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2), 46. https://doi.org/10.3390/antibiotics7020046 (2018).
doi: 10.3390/antibiotics7020046
pubmed: 29890753
pmcid: 6023022
Saleh, N. B. et al. Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: Implications for interactions between nanomaterials and biofilm bacteria. Front. Microbiol. 6, 677. https://doi.org/10.3389/fmicb.2015.00677 (2015).
doi: 10.3389/fmicb.2015.00677
pubmed: 26236285
pmcid: 4505144
Ghorbanizadeh, S. et al. Antibacterial effects and cellular mechanisms of iron oxide magnetic nanoparticles coated by piroctone olamine against some cariogenic bacteria. Ann. Med. Surg. (Lond.) 81, 104291. https://doi.org/10.1016/j.amsu.2022.104291 (2022).
doi: 10.1016/j.amsu.2022.104291
pubmed: 36147164
Allafchian, A. & Hosseini, S. S. Antibacterial magnetic nanoparticles for therapeutics: A review. Int. Nanobiotechnol. 13(8), 786–799. https://doi.org/10.1049/iet-nbt.2019.0146 (2019).
doi: 10.1049/iet-nbt.2019.0146
Gudkov, S. V. et al. Do iron oxide nanoparticles have significant antibacterial properties?. Antibiotics 10(7), 884. https://doi.org/10.3390/antibiotics10070884 (2021).
doi: 10.3390/antibiotics10070884
pubmed: 34356805
pmcid: 8300809
Jin, Y., Liu, F., Shan, C., Tong, M. & Hou, Y. Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res. 50, 124–134. https://doi.org/10.1016/j.watres.2013.11.045 (2014).
doi: 10.1016/j.watres.2013.11.045
pubmed: 24370656
Trujillo, W. et al. Adherence of amino acids functionalized iron oxide nanoparticles on bacterial models E. Coli and B. subtilis. J. Phys. Conf. Ser. 987, 012044. https://doi.org/10.1088/1742-6596/987/1/012044 (2018).
doi: 10.1088/1742-6596/987/1/012044
Idrees, M., Mohammad, A. R., Karodia, N. & Rahman, A. Multimodal role of amino acids in microbial control and drug development. Antibiotics 9(6), 330. https://doi.org/10.3390/antibiotics9060330 (2020).
doi: 10.3390/antibiotics9060330
pubmed: 32560458
pmcid: 7345125
Liu, Y. et al. Cysteine potentiates bactericidal antibiotics activity against gram-negative bacterial persisters. Infect. Drug Resist. 13, 2593–2599. https://doi.org/10.2147/IDR.S263225 (2020).
doi: 10.2147/IDR.S263225
pubmed: 32801796
pmcid: 7397215
Zara, G., Budroni, M., Mannazzu, I., Fancello, F. & Zara, S. Yeast biofilm in food realms: Occurrence and control. World J. Microbiol. Biotechnol. 36(9), 134. https://doi.org/10.1007/s11274-020-02911-5 (2020).
doi: 10.1007/s11274-020-02911-5
pubmed: 32776210
pmcid: 7415760
Herlyn, M. et al. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 45(11 Pt 2), 5670–5676 (1985).
pubmed: 4053039
Giard, D. J. et al. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51, 1417–1423 (1973).
doi: 10.1093/jnci/51.5.1417
pubmed: 4357758
Wang, R. et al. A new amide alkaliod induces the apoptosis of human melanoma A375 cells via inhibition of the STAT3 signaling pathway. New J. Chem. 47, 120–130. https://doi.org/10.1039/D2NJ04384J (2023).
doi: 10.1039/D2NJ04384J
Cykowska, A. et al. Biomechanical and biochemical assessment of YB-1 expression in A375 melanoma cell line: Exploratory study. Front. Mol. Med. 3, 1050487. https://doi.org/10.3389/fmmed.2023.1050487 (2023).
doi: 10.3389/fmmed.2023.1050487
pubmed: 39086667
pmcid: 11285636
Mostafa, A. A. et al. Bioactive glass doped with noble metal nanoparticles for bone regeneration: In vitro kinetics and proliferative impact on human bone cell line. RSC Adv. 11, 25628–25638. https://doi.org/10.1039/D1RA03876A (2021).
doi: 10.1039/D1RA03876A
pubmed: 35478889
pmcid: 9036971
Ye, P. et al. Ultrasmall Fe
doi: 10.1515/ntrev-2020-0006
Hu, X. & Guo, F. Amino acid sensing in metabolic homeostasis and health. Endocr. Rev. 42(1), 56–76. https://doi.org/10.1210/endrev/bnaa026 (2021).
doi: 10.1210/endrev/bnaa026
pubmed: 33053153
Chen, J., Cui, L., Lu, S. & Xu, S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 15(1), 42. https://doi.org/10.1038/s41419-024-06435-w (2024).
doi: 10.1038/s41419-024-06435-w
pubmed: 38218942
pmcid: 10787762
Endicott, M., Jones, M. & Hull, J. Amino acid metabolism as a therapeutic target in cancer: A review. Amino Acids 53(8), 1169–1179. https://doi.org/10.1007/s00726-021-03052-1 (2021).
doi: 10.1007/s00726-021-03052-1
pubmed: 34292410
pmcid: 8325646