Experimental evolution links post-transcriptional regulation to Leishmania fitness gain.
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
30
12
2021
accepted:
15
02
2022
revised:
28
03
2022
pubmed:
17
3
2022
medline:
23
4
2022
entrez:
16
3
2022
Statut:
epublish
Résumé
The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth in promastigote culture (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network associated with parasite fitness gain, with genome instability causing highly reproducible, gene dosage-independent and -dependent changes. Reduction of flagellar transcripts and increase in coding and non-coding RNAs implicated in ribosomal biogenesis and protein translation were not correlated to dosage changes of the corresponding genes, revealing a gene dosage-independent, post-transcriptional mechanism of regulation. In contrast, abundance of gene products implicated in post-transcriptional regulation itself correlated to corresponding gene dosage changes. Thus, RNA abundance during parasite adaptation is controled by direct and indirect gene dosage changes. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain in culture may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain in culture, where differential regulation of mRNA stability and the generation of modified ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania transcriptome and non-coding small RNome as potential novel sources for the discovery of biomarkers that may be associated with parasite phenotypic adaptation in clinical settings.
Identifiants
pubmed: 35294501
doi: 10.1371/journal.ppat.1010375
pii: PPATHOGENS-D-21-02620
pmc: PMC8959184
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1010375Déclaration de conflit d'intérêts
The authors declare that they have no conflict of interest.
Références
Nat Rev Mol Cell Biol. 2010 Mar;11(3):220-8
pubmed: 20177397
Genome Biol. 2014;15(12):550
pubmed: 25516281
Mol Biochem Parasitol. 2007 Dec;156(2):93-101
pubmed: 17765983
PLoS Pathog. 2014 Jul 03;10(7):e1004244
pubmed: 24992200
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Nat Cell Biol. 2000 May;2(5):E71-2
pubmed: 10806485
RNA. 2002 Feb;8(2):237-46
pubmed: 11911368
Mol Cell. 2011 Nov 18;44(4):660-6
pubmed: 22099312
Mol Microbiol. 2016 May;100(3):457-71
pubmed: 26784394
J Vector Ecol. 2011 Mar;36 Suppl 1:S1-9
pubmed: 21366760
Eukaryot Cell. 2006 Dec;5(12):1969-79
pubmed: 17041189
J Mol Biol. 1997 Jun 6;269(2):203-13
pubmed: 9191065
Nucleic Acids Res. 1995 Aug 25;23(16):3290-4
pubmed: 7545286
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Prog Allergy. 1988;41:173-92
pubmed: 2457215
PLoS Pathog. 2014 Jun 12;10(6):e1004178
pubmed: 24945722
Trends Genet. 2018 Dec;34(12):972-990
pubmed: 30316580
PLoS Biol. 2014 May 20;12(5):e1001868
pubmed: 24844805
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9258-63
pubmed: 10908670
Nucleic Acids Res. 2002 Jan 1;30(1):207-10
pubmed: 11752295
Curr Opin Microbiol. 2016 Aug;32:46-51
pubmed: 27177350
Nucleic Acids Res. 2015 Jul 27;43(13):6222-35
pubmed: 26092695
mBio. 2017 May 23;8(3):
pubmed: 28536289
Wkly Epidemiol Rec. 2016 Jun 3;91(22):287-96
pubmed: 27263128
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Cell Microbiol. 2010 Dec;12(12):1765-79
pubmed: 20636473
PLoS Negl Trop Dis. 2017 Sep 25;11(9):e0005924
pubmed: 28945751
Future Microbiol. 2011 Apr;6(4):459-74
pubmed: 21526946
Bioinformatics. 2006 Aug 15;22(16):1979-87
pubmed: 16777905
Nucleic Acids Res. 2009 Jun;37(10):3243-53
pubmed: 19321500
Mol Biochem Parasitol. 1994 Aug;66(2):345-7
pubmed: 7808483
Curr Opin Microbiol. 2007 Dec;10(6):569-77
pubmed: 18177626
PLoS Negl Trop Dis. 2013 Apr 04;7(4):e2154
pubmed: 23593521
Mol Cell. 2003 Feb;11(2):425-35
pubmed: 12620230
Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):285-311
pubmed: 16257828
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Nucleic Acids Res. 2019 Aug 22;47(14):7633-7647
pubmed: 31147702
Genome Res. 2011 Dec;21(12):2129-42
pubmed: 22038252
Trends Parasitol. 2019 Oct;35(10):778-794
pubmed: 31473096
Bioinformatics. 2017 Jan 1;33(1):135-136
pubmed: 27605098
Exp Parasitol. 2001 Oct;99(2):97-103
pubmed: 11748963
Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):397-414
pubmed: 22065625
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
mBio. 2018 Nov 6;9(6):
pubmed: 30401775
RNA. 2017 Aug;23(8):1188-1199
pubmed: 28500251
Nat Genet. 2011 May;43(5):491-8
pubmed: 21478889
Genome Res. 2011 Dec;21(12):2143-56
pubmed: 22038251
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21010-5
pubmed: 23197825
mBio. 2017 Sep 12;8(5):
pubmed: 28900023
J Parasitol. 2010 Dec;96(6):1134-8
pubmed: 21158623
Mol Cell Proteomics. 2019 Jul;18(7):1271-1284
pubmed: 30948621
Microbes Infect. 2014 Jan;16(1):2-5
pubmed: 24286926
Nucleic Acids Res. 2009 Apr;37(5):1387-99
pubmed: 19129236
Proteomics. 2016 Jan;16(1):29-32
pubmed: 26572953
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):
pubmed: 34903666
RNA Biol. 2015;12(11):1222-55
pubmed: 25970223
Cell Microbiol. 2011 Jul;13(7):978-91
pubmed: 21501362
PLoS One. 2013 Nov 27;8(11):e81899
pubmed: 24312377
Proc Natl Acad Sci U S A. 1981 May;78(5):3083-7
pubmed: 16593020
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
PLoS Negl Trop Dis. 2013 Apr 25;7(4):e2187
pubmed: 23638207
Sci Rep. 2016 May 04;6:25296
pubmed: 27142987
PLoS Genet. 2017 Apr 20;13(4):e1006668
pubmed: 28426692
Biochem Cell Biol. 1990 Nov;68(11):1281-7
pubmed: 2275804
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
PLoS One. 2009 Sep 25;4(9):e7147
pubmed: 19779612
Biochem Soc Trans. 2018 Aug 20;46(4):855-869
pubmed: 29986937
Genes (Basel). 2019 Oct 10;10(10):
pubmed: 31658789
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Parasitology. 2002 May;124(Pt 5):495-507
pubmed: 12049412
Trends Parasitol. 2017 Apr;33(4):256-257
pubmed: 27988096
Front Cell Infect Microbiol. 2012 Sep 13;2:119
pubmed: 22993722
Science. 2012 Apr 27;336(6080):418-9
pubmed: 22539705
F1000Res. 2016 Sep 20;5:2350
pubmed: 27703673
Nat Ecol Evol. 2017 Dec;1(12):1961-1969
pubmed: 29109466