TREM2 and CD163 Ameliorate Microglia-Mediated Inflammatory Environment in the Aging Brain.
Aging
Bioinformatics
Microglia
Neuroinflammation
Journal
Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
02
09
2021
accepted:
02
01
2022
pubmed:
21
3
2022
medline:
6
5
2022
entrez:
20
3
2022
Statut:
ppublish
Résumé
Aging decreases cognitive functions, especially learning and memory. Neuroinflammation is mediated by microglia and occurs in age-related neurodegenerative diseases. The expression profiles in a dataset of cognitively normal controls (GSE11882) were obtained from the Gene Expression Omnibus (GEO) database. Microarray data were used to explore the expression of age-related genes in the human hippocampus. A total of 120 differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was constructed. A total of 18 key genes were identified by the plugin cytoHubba in Cytoscape software. Two genes with a positive impact on cognition during aging were teased out: triggering receptor expressed on myeloid cells 2 (TREM2) and a scavenger receptor (CD163). Finally, the results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB) verified that the mRNA expression of these two genes was significantly upregulated in aged mice. Moreover, the levels of the inflammatory factors IL-1β and IL-6 were significantly increased. TREM2 and CD163 may be upregulated to alleviate the inflammatory environment resulting from microglial activation in the aging brain, thereby delaying cognitive decline.
Identifiants
pubmed: 35306602
doi: 10.1007/s12031-022-01965-4
pii: 10.1007/s12031-022-01965-4
doi:
Substances chimiques
Antigens, CD
0
Antigens, Differentiation, Myelomonocytic
0
CD163 antigen
0
Membrane Glycoproteins
0
Receptors, Cell Surface
0
Receptors, Immunologic
0
Trem2 protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1075-1084Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Azam S, Haque ME, Kim IS, Choi DK (2021) Microglial turnover in ageing-related neurodegeneration: therapeutic avenue to intervene in disease progression. Cells 10
Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R et al (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105:15605–15610
doi: 10.1073/pnas.0806883105
Brendel M, Kleinberger G, Probst F, Jaworska A, Overhoff F, Blume T et al (2017) Increase of TREM2 during aging of an Alzheimer’s disease mouse model is paralleled by microglial activation and amyloidosis. Front Aging Neurosci 9:8
doi: 10.3389/fnagi.2017.00008
Christa B, Mirko R, Evelyn O, Thomas L, Gerd S (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67:97–103
doi: 10.1002/jlb.67.1.97
Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17:201–207
doi: 10.1038/nrn.2016.7
Daws MR, Lanier LL, Seaman WE, Ryan JC (2001) Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur J Immunol 31:783–791
doi: 10.1002/1521-4141(200103)31:3<783::AID-IMMU783>3.0.CO;2-U
David HC, Nicole CB, Victoria P, Paul DC, Joseph R, Andrea JT et al (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. BioMed Central 9
Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081
doi: 10.1016/j.cell.2018.05.003
Fabriek BO, Dijkstra CD, Berg TKVD (2005) The macrophage scavenger receptor CD163. Immunobiology 210:0–160
Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I et al (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56:1438–1447
doi: 10.1002/glia.20710
Garcia-Revilla J, Alonso-Bellido IM, Burguillos MA, Herrera AJ, Espinosa-Oliva AM, Ruiz R et al (2019) Reformulating pro-oxidant microglia in neurodegeneration. J Clin Med 8
Gorp HV, Delputte PL, Nauwynck HJ (2010) Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol 47:1650–1660
doi: 10.1016/j.molimm.2010.02.008
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127
doi: 10.1056/NEJMoa1211851
Hui-Ming G, Bin L, Wangqin Z, Jau-Shyong H (2003) Novel anti-inflammatory therapy for Parkinson's disease. Trends Pharmacol Sci 24
Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL et al (2006) TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res 21:237–245
doi: 10.1359/JBMR.051016
Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC et al (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156
doi: 10.1111/j.1471-4159.2009.06042.x
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics (Oxford, England) 4:249–264
doi: 10.1093/biostatistics/4.2.249
Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL et al (2015) Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 35:3384–3396
doi: 10.1523/JNEUROSCI.2620-14.2015
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer's disease. Cell. 169:1276-+
Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86
Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT (2008) Hubba: hub objects analyzer–a framework of interactome hubs identification for network biology. Nucleic Acids Res 36:W438–W443
doi: 10.1093/nar/gkn257
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408
doi: 10.1006/meth.2001.1262
Mandrekar-Colucci S, Landreth GE (2010) Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9:156–167
doi: 10.2174/187152710791012071
Mecca C, Giambanco I, Donato R, Arcuri C (2018) Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci 19
Michelle LB, Luigi Z, Jau-Shyong H (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8
Moestrup S, Moller H (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti©\inflammatory response. Ann Med 36:347–354
doi: 10.1080/07853890410033171
Morel GR, Andersen T, Pardo J, Zuccolilli GO, Cambiaggi VL, Herenu CB et al (2015) Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. Neuroscience 303:189–199
doi: 10.1016/j.neuroscience.2015.06.050
Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455
doi: 10.1016/S1471-4906(03)00181-9
Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG (2017) Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus 27(4):435–49
Pey P, Pearce RK, Kalaitzakis ME, Griffin WS, Gentleman SM (2014) Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol Commun 2:21
doi: 10.1186/2051-5960-2-21
Piccio L, Deming Y, Del-¨¢guila JL, Ghezzi L, Holtzman DM, Fagan AM et al (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathologica 131:925–933
doi: 10.1007/s00401-016-1533-5
Puigdell¨ªvol M, Allendorf David H, Brown Guy C (2020) Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. Front Cell Neurosci 14
Qu WH, Li L (2021) Loss of TREM2 confers resilience to synaptic and cognitive impairment in aged mice (vol 40, pg 9552, 2020). J Neurosci 41:6966
Raj D, Yin ZR, Breur M, Doorduin J, Holtman IR, Olah M et al (2017) Increased white matter inflammation in aging- and Alzheimer's disease brain. Front Mol Neurosci 10
Rajendran L, Paolicelli RC (2018) Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci Off J Soc Neurosci 38:2911–2919
doi: 10.1523/JNEUROSCI.1136-17.2017
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47
Rocca WA, Petersen RC, Knopman DS, Hebert LE, Evans DA, Hall KS, Gao S, Unverzagt FW, Langa KM, Larson EB, White LR (2011) Trends in the incidence and prevalence of Alzheimer's disease dementia and cognitive impairment in the United States. Alzheimer's & Dementia 7(1) 80–93. https://doi.org/10.1016/j.jalz.2010.11.002
doi: 10.1016/j.jalz.2010.11.002
Schrijvers EMC, Verhaaren BFJ, Koudstaal PJ, Hofman A, Ikram MA, Breteler MMB (2012) Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study. Neurology 78:1456–1463
doi: 10.1212/WNL.0b013e3182553be6
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
doi: 10.1101/gr.1239303
Soares Miguel P, Bach Fritz H (2009) Heme oxygenase-1: from biology to therapeutic potential. Trends Mol Med 15
Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE, Grabowska W et al (2015) APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction. PLoS Biology 13:e1002279
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368
doi: 10.1093/nar/gkw937
Takahashi K (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657
doi: 10.1084/jem.20041611
Tanzi RE (2015) TREM2 and Risk of Alzheimer’s Disease-Friend or Foe? N Engl J Med 372:2564–2565
doi: 10.1056/NEJMcibr1503954
Teissier T, Boulanger E, Deramecourt V (2020) Normal ageing of the brain: Histological and biological aspects. Rev Neurol-France 176:649–660
doi: 10.1016/j.neurol.2020.03.017
Wang ST, Mustafa M, Yuede CM, Salazar SV, Kong P, Long H et al (2020) Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer's disease model. J Exp Med 217
Wei MD, Lan YX, Lu K, Wang Y, Chen WY (2021) Knockdown of astrocytic TREM2 in the hippocampus relieves cognitive decline in elderly male mice. Behav Brain Res 397
Yan L, Aicha A, Joseph AT, Alan LP, Connie Sn, Maria G (2015) Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 135
Zhao L (2019) CD33 in Alzheimer’s disease - biology, pathogenesis, and therapeutics: A Mini-Review. Gerontology 65:323–331
doi: 10.1159/000492596
Zhong L, Chen XF, Zhang ZL, Wang Z, Shi XZ, Xu K et al (2015) DAP12 stabilizes the C-terminal fragment of the triggering receptor expressed on myeloid cells-2 (TREM2) and protects against LPS-induced pro-inflammatory response. J Biol Chem 290:15866–15877
doi: 10.1074/jbc.M115.645986