SEC1A is a major Arabidopsis Sec1/Munc18 gene in vesicle trafficking during pollen tube tip growth.
cell wall
glycosylation
pollen
reproduction
secretory pathway
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
22
02
2022
received:
21
09
2021
accepted:
14
03
2022
pubmed:
21
3
2022
medline:
7
6
2022
entrez:
20
3
2022
Statut:
ppublish
Résumé
Pollen tubes (PTs) grow by the targeted secretion of new cell wall material to their expanding tip region. Sec1/Munc18 (SM) proteins promote membrane fusion through regulation of the SNARE complex. We have previously shown that disruption of protein glycosylation in the Arabidopsis thaliana hpat1 hpat3 double mutant leads to PT growth defects that can be suppressed by reducing secretion. Here, we identified five point mutant alleles of the SM protein SEC1A as hpat1/3 suppressors. The suppressors increased seed set, reduced PT growth defects and reduced the rate of glycoprotein secretion. In the absence of the hpat mutations, sec1a reduced pollen germination and PT elongation producing shorter and wider PTs. Consistent with a defect in membrane fusion, sec1a PTs accumulated secretory vesicles. Though sec1a had significantly reduced male transmission, homozygous sec1a plants maintained full seed set, demonstrating that SEC1A was ultimately dispensable for pollen fertility. However, when combined with a mutation in another SEC1-like SM gene, keule, pollen fertility was totally abolished. Mutation in sec1b, the final member of the Arabidopsis SEC1 clade, did not enhance the sec1a phenotype. Thus, SEC1A is the major SM protein promoting pollen germination and tube elongation, but in its absence KEULE can partially supply this activity. When we examined the expression of the SM protein family in other species for which pollen expression data were available, we found that at least one Sec1-like protein was highly expressed in pollen samples, suggesting a conserved role in pollen fertility in other species.
Identifiants
pubmed: 35306707
doi: 10.1111/tpj.15742
pmc: PMC9322465
doi:
Substances chimiques
Arabidopsis Proteins
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1353-1369Informations de copyright
© 2022 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Nat Protoc. 2015 Jun;10(6):845-58
pubmed: 25950237
Planta. 2007 Feb;225(3):563-73
pubmed: 16944199
Plant Cell. 2004 Jun;16(6):1589-603
pubmed: 15155878
J Cell Sci. 2001 Jul;114(Pt 14):2685-95
pubmed: 11683395
Plant Physiol. 2000 Dec;124(4):1558-69
pubmed: 11115874
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2226-31
pubmed: 18256186
Plant Physiol. 2016 Oct;172(2):980-1002
pubmed: 27516531
Genome Biol. 2004;5(11):R85
pubmed: 15535861
Nucleic Acids Res. 2012 Jan;40(Database issue):D1211-5
pubmed: 22080561
Plant J. 2016 Dec;88(6):1058-1070
pubmed: 27549386
Nature. 2000 Mar 23;404(6776):355-62
pubmed: 10746715
J Plant Res. 2007 Jan;120(1):157-65
pubmed: 17186119
Plant Cell. 2002 Dec;14(12):2985-94
pubmed: 12468722
Nat Cell Biol. 2006 Jan;8(1):64-71
pubmed: 16378100
Plant Physiol. 2020 Dec;184(4):1640-1657
pubmed: 32989009
J Exp Bot. 2017 Jun 01;68(12):3267-3281
pubmed: 28369603
Structure. 2000 Jul 15;8(7):685-94
pubmed: 10903948
BMC Plant Biol. 2010 Aug 18;10:179
pubmed: 20718953
Plant Physiol. 2005 Aug;138(4):2005-18
pubmed: 16040664
Ann Bot. 2013 Feb;111(2):183-90
pubmed: 23186834
Plant Physiol. 2009 Apr;149(4):1668-78
pubmed: 19251905
Nat Chem Biol. 2013 Nov;9(11):726-30
pubmed: 24036508
Plant Physiol. 2013 Jun;162(2):1092-109
pubmed: 23590974
Cell. 1994 Sep 23;78(6):937-48
pubmed: 7923363
Sci Rep. 2017 Jan 11;7:40279
pubmed: 28074928
J Cell Biol. 2001 Feb 5;152(3):531-43
pubmed: 11157980
Plant Mol Biol. 2003 Sep;53(1-2):247-59
pubmed: 14756321
Plant Cell. 2008 May;20(5):1330-45
pubmed: 18492870
Plant Physiol. 1998 Jun;117(2):407-15
pubmed: 9625693
Biochem J. 2020 Jan 17;477(1):243-258
pubmed: 31951000
Plant Physiol. 2019 Nov;181(3):1114-1126
pubmed: 31530628
Plant J. 2017 Nov;92(3):375-385
pubmed: 28792633
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15264-9
pubmed: 21876177
Plant Physiol. 2020 Dec;184(4):1823-1839
pubmed: 33051268
Front Plant Sci. 2021 Mar 18;12:645219
pubmed: 33815452
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6309-6314
pubmed: 29844177
Plant J. 2016 Jan;85(2):193-208
pubmed: 26577059
Science. 2003 Aug 1;301(5633):653-7
pubmed: 12893945
Plant Physiol. 2021 May 27;186(1):330-343
pubmed: 33576796
Plant Cell. 2001 Mar;13(3):659-66
pubmed: 11251103
Methods Mol Biol. 2020;2160:93-108
pubmed: 32529431
Plant Reprod. 2021 Jun;34(2):131-148
pubmed: 33860833
J Cell Biol. 1999 Jul 26;146(2):333-44
pubmed: 10427089
Plant Cell Physiol. 2009 Feb;50(2):280-9
pubmed: 19098073
Plant Cell. 2013 Apr;25(4):1368-82
pubmed: 23572542
Front Plant Sci. 2020 Nov 30;11:599247
pubmed: 33329663
Science. 2009 Jan 23;323(5913):474-7
pubmed: 19164740
Plant Mol Biol. 1998 Jul;37(5):859-69
pubmed: 9678581
Mol Gen Genet. 1996 Dec 13;253(3):267-77
pubmed: 9003313
Plant Signal Behav. 2011 May;6(5):665-70
pubmed: 21499026
Front Cell Dev Biol. 2021 Jan 21;8:615447
pubmed: 33553150
Plant J. 2010 Feb 1;61(3):519-28
pubmed: 19891705
Nat Rev Mol Cell Biol. 2016 Aug;17(8):465-79
pubmed: 27301672
Genome Res. 2009 Oct;19(10):1786-800
pubmed: 19546170
Biochem Insights. 2015 Sep 20;8(Supple 2):1-13
pubmed: 26568683
Plant Reprod. 2015 Dec;28(3-4):143-51
pubmed: 26111864
Dev Cell. 2012 May 15;22(5):989-1000
pubmed: 22595672
PLoS Genet. 2009 Aug;5(8):e1000621
pubmed: 19714218
BMC Genomics. 2010 May 28;11:338
pubmed: 20507633
Front Physiol. 2017 Jan 20;8:5
pubmed: 28163686
Nat Methods. 2012 Oct;9(10):1005-12
pubmed: 22961245
Plant J. 2020 Aug;103(4):1399-1419
pubmed: 32391581
Plant Cell Physiol. 2020 Oct 1;61(10):1750-1759
pubmed: 32706881
J Integr Plant Biol. 2015 Jan;57(1):79-92
pubmed: 25431342