Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats.
Animals
Antioxidants
/ therapeutic use
Autistic Disorder
/ chemically induced
Female
Gallic Acid
/ pharmacology
Glutathione
/ metabolism
Glutathione Peroxidase
/ metabolism
Hippocampus
/ metabolism
Kelch-Like ECH-Associated Protein 1
/ metabolism
Memory Disorders
NF-E2-Related Factor 2
/ metabolism
Oxidative Stress
Pregnancy
Rats
Rhus
Superoxide Dismutase
/ metabolism
Valproic Acid
autism
gallic acid
hippocampus
nanophytosome
oxidative stress
sumac
Journal
Journal of biochemical and molecular toxicology
ISSN: 1099-0461
Titre abrégé: J Biochem Mol Toxicol
Pays: United States
ID NLM: 9717231
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
revised:
05
01
2022
received:
17
03
2021
accepted:
02
03
2022
pubmed:
22
3
2022
medline:
18
6
2022
entrez:
21
3
2022
Statut:
ppublish
Résumé
Autism spectrum disorders cover a range of neurodevelopmental disorders characterized by impairments in social interaction and cognitive deficits. Phenolic compound applications have been restricted due to their poor solubility, bioavailability, and low stability. This paper aimed to explore the neuroprotective effects of sumac and gallic acid-loaded nanophytosomes (GNP) on oxidative stress-induced cognitive impairment and Nrf2/Keap1 gene expression in the autism model. Valproic acid (VPA) was administered intraperitoneally at doses of 500 mg/kg to female rats during gestational 12.5 days (E12.5). The prenatal VPA-exposed rats were divided into five groups, including VPA, VPA treated with sumac, gallic acid (GA), sumac-loaded nanophytosome (SNP), and GNP at doses of 20 mg/kg for 4 weeks (n = 6). A novel object test was conducted and antioxidant parameters and Nrf2/Keap1gene expression were evaluated in the hippocampus. According to the obtained results, the rat model of autism exhibited recognition memory impairment. We observed an increase in glutathione peroxidase (GPx), glutathione reductase (GRx), superoxide dismutase (SOD), catalase (CAT) enzyme activity, total antioxidant capacity (TAC), and glutathione (GSH) levels. Furthermore, sumac and GNP improved recognition memory deficits and increased GPx, GRx, SOD, and CAT activities, GSH and TAC levels, and Nrf2/Keap1gene expression in the hippocampal area. Our results also suggested that SNP and GNP ameliorate VPA-induced learning and memory deficits more efficiently than sumac extract and pure GA by reducing oxidative stress, enhancing antioxidant enzyme activity, and Keap1/Nrf2 gene expression. The present study demonstrated that the utilization of SNP and GNP significantly improved recognition memory deficits.
Substances chimiques
Antioxidants
0
KEAP1 protein, rat
0
Kelch-Like ECH-Associated Protein 1
0
NF-E2-Related Factor 2
0
Valproic Acid
614OI1Z5WI
Gallic Acid
632XD903SP
Glutathione Peroxidase
EC 1.11.1.9
Superoxide Dismutase
EC 1.15.1.1
Glutathione
GAN16C9B8O
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e23035Subventions
Organisme : Cognitive Sciences and Technologies Council
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
T. Takumi, K. Tamada, F. Hatanaka, N. Nakai, P. F. Bolton, Neurosci. Biobehav. Rev. 2020, 110, 60. https://doi.org/10.1016/j.neubiorev.2019.04.012
S. Bölte, S. Girdler, P. B. Marschik, Cell. Mol. Life Sci. 2019, 76, 1275.
E. London, Environ. Health Perspect. 2000, 108, 401.
A. Chauhan, V. Chauhan, Pathophysiology 2006, 13, 171.
S. Katta, V. Bakshi, S. Geethakrishnan, J. Neurol. Sci. 2019, 405, 126.
R. Khalaj, A. Hajizadeh Moghaddam, M. Zare, Int. J. Dev. Neurosci. 2018, 69, 80. https://doi.org/10.1016/j.ijdevneu.2018.06.009
C. Nicolini, M. Fahnestock, Exp. Neurol. 2018, 299, 217.
P. Palsamy, K. R. Bidasee, T. Shinohara, Exp. Eye Res. 2014, 121, 26.
I. Bellezza, I. Giambanco, A. Minelli, R. Donato, Biochim. Biophys. Acta, Mol. Cell Res. 2018, 1865, 721.
H. Zhong, R. Xiao, R. Ruan, H. Liu, X. Li, Y. Cai, J. Zhao, X. Fan, Psychopharmacology 2020, 237, 3539.
L. Alvarez-Arellano, M. Salazar-García, J. C. Corona, Molecules 2020, 25, 5597.
Y. Peng, H. Zhang, R. Liu, Y. Mine, J. McCallum, C. Kirby, R. Tsao, J. Funct. Foods. 2016, 20, 139.
K.roes Bv, A. Van den Berg, H. Q. Van Ufford, H. Van Dijk, R. Labadie, Planta Med. 1992, 58, 499.
A.lves AdCS, R. M. Mainardes, N. M. Khalil, Mater. Sci. Eng., C 2016, 60, 126.
Y. Adachi, R. Shimoyama, J. Neurol. Sci. 2015, 357, e235.
Y. Zhao, D. Li, Z. Zhu, Y. Sun, Rejuvenation Res. 2020, 23, 284.
M. S. Korani, Y. Farbood, A. Sarkaki, H. F. Moghaddam, M. T. Mansouri, Eur. J. Pharmacol. 2014, 733, 62.
M. A. Dehghani, N. S. Maram, E. Moghimipour, L. Khorsandi, M. Mahdavinia, Biochim. Biophys. Acta, Mol. Basis Dis. 2020, 1866, 165911.
A. Babazadeh, M. Zeinali, H. Hamishehkar, Curr. Drug Targets 2018, 19, 170.
M. Nazari, B. Ghanbarzadeh, H. S. Kafil, M. Zeinali, H. Hamishehkar, Colloid Interface Sci. Commun. 2019, 30, 100176.
H. Mirzaei, A. Shakeri, B. Rashidi, A. Jalili, Z. Banikazemi, A. Sahebkar, Biomed. Pharmacother. 2017, 85, 102.
S. Rasaee, S. Ghanbarzadeh, M. Mohammadi, H. Hamishehkar, Pharm. Sci. 2014, 20, 96.
G. Maramaldi, S. Togni, I. Pagin, L. Giacomelli, R. Cattaneo, R. Eggenhöffner, S. E. Burastero, Clin. Cosmet. Investig. Dermatol. 2016, 9, 55.
G. H. Shin, S. K. Chung, J. T. Kim, H. J. Joung, H. J. Park, J. Agric. Food Chem. 2013, 61, 11119.
M. N. M. de Lima, J. Presti-Torres, A. Dornelles, F. Siciliani Scalco, R. Roesler, V. A. Garcia, N. Schröder, Neurobiol. Learn. Mem. 2011, 95, 305. https://doi.org/10.1016/j.nlm.2010.12.007
M. M. Bradford, Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3
S. Genet, R. K. Kale, N. Z. Baquer, Mol. Cell. Biochem. 2002, 236, 7. https://doi.org/10.1023/A:1016103131408
J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, W. G. Hoekstra, Science 1973, 179, 588. https://doi.org/10.1126/science.179.4073.588
G. L. Ellman, Arch. Biochem. Biophys. 1959, 82, 70. https://doi.org/10.1016/0003-9861(59)90090-6
R. E. Pinto, W. Bartley, Biochem. J. 1969, 112, 109. https://doi.org/10.1042/bj1120109
I. F. Benzie, J. J. Strain, Anal. Biochem. 1996, 239, 70.
N. Sharma, M. Kapoor, B. Nehru, Behav. Brain Res. 2016, 296, 177.
A. H. Moghaddam, S. R. Mokhtari Sangdehi, M. Ranjbar, V. Hasantabar, Eur. J. Pharmacol. 2020, 877, 173066. https://doi.org/10.1016/j.ejphar.2020.173066
M. M. Al-Amin, M. M. Rahman, F. R. Khan, F. Zaman, H. M. Reza, Behav. Brain Res. 2015, 286, 112.
E. A. Arafat, D. A. Shabaan, Acta Histochem. 2019, 121, 841.
H. Wu, X. Wang, J. Gao, S. Liang, Y. Hao, C. Sun, W. Xia, Y. Cao, L. Wu, Life Sci. 2017, 173, 43.
V. Senturk, C. Goker, A. Bilgic, S. Olmez, H. Tugcu, B. Oncu, E. Cem Atbasoglu, Bipolar Disord. 2007, 9, 136.
L. A. Cysique, P. Maruff, B. J. Brew, BMC Neurol. 2006, 6, 42.
J. Umka, S. Mustafa, M. ElBeltagy, A. Thorpe, L. Latif, G. Bennett, P. Wigmore, Neuroscience 2010, 166, 15.
R. Hajisoltani, S. A. Karimi, M. Rahdar, S. Davoudi, M. Borjkhani, N. Hosseinmardi, G. Behzadi, M. Janahmadi, Brain Res. 2019, 1708, 188.
M. Sharma, Y. Gupta, Life Sci. 2002, 71, 2489.
C. T. Gualtieri, L. G. Johnson, Medscape Gen. Med. 2006, 8, 46.
A. Salimi, N. Alyan, N. Akbari, Z. Jamali, J. Pourahmad, Drug Chem. Toxicol. 2020, 3, 1.
R. Heidari, F. Jafari, F. Khodaei, B. Shirazi Yeganeh, H. Niknahad, Nephrology 2018, 23, 351.
Y. Zhang, C. Yang, G. Yuan, Z. Wang, W. Cui, R. Li, J. Mol. Med. 2015, 35, 263.
T. Sandhya, J. Sowjanya, B. Veeresh, Neurochem. Res. 2012, 37, 1121.
G. Bjørklund, N. A. Meguid, M. A. El-Bana, A. A. Tinkov, K. Saad, M. Dadar, M. Hemimi, A. V. Skalny, B. Hosnedlová, R. Kizek, Mol. Neurobiol. 2020, 57, 2314.
A. Ghezzo, P. Visconti, P. M. Abruzzo, A. Bolotta, C. Ferreri, G. Gobbi, G. Malisardi, S. Manfredini, M. Marini, L. Nanetti, PLoS One 2013, 8, e66418.
T. Nguyen, P. Nioi, C. B. Pickett, J. Biol. Chem. 2009, 284, 13291.
H. Yamazaki, K. Tanji, K. Wakabayashi, S. Matsuura, K. Itoh, Pathol. Int. 2015, 65, 210.
J. Zhang, X. Li, H. Chen, Y. Lu, L. Li, L. Han, C. Lu, Int. Immunopharmacol. 2018, 65, 84.
R.-B. Feng, Y. Wang, C. He, Y. Yang, J.-B. Wan, Food Chem. Toxicol. 2018, 119, 479.
H. Tohma, A. Altay, E. Köksal, A. C. Gören, İ. Gülçin, J. Food Meas. Charact. 2019, 13, 1607.
M. Daglia, A. Di Lorenzo, F. S. Nabavi, S. Z. Talas, M. S. Nabavi, Curr. Pharm. Biotechnol. 2014, 15, 362.
L. S. Taghavi, N. Hemmatinejad, A. Bashari, Procedia Mater. Sci. 2015, 11, 202. https://doi.org/10.1016/j.mspro.2015.11.105
I. Nallamuthu, A. Devi, F. Khanum, Asian J. Pharm. Sci. 2015, 10, 203.
A. B. Kumar, P. Habbu, P. Hullatti, R. S. Kumar, Syst. Rev. Pharm. 2017, 8, 5.
B. Ghanbarzadeh, A. Babazadeh, H. Hamishehkar, Food Biosci. 2016, 15, 126.
M. Yu, X. Chen, J. Liu, Q. Ma, Z. Zhuo, H. Chen, L. Zhou, S. Yang, L. Zheng, C. Ning, Neurobiol. Dis. 2019, 124, 67.
M. T. Mansouri, Y. Farbood, M. J. Sameri, A. Sarkaki, B. Naghizadeh, M. Rafeirad, Food Chem. 2013, 138, 1028.
K. Nagpal, S. K. Singh, D. N. Mishra, Drug Deliv. 2012, 19, 378.